1. Suppose that we are given an \(n \) by \(m \) matrix \(A \) whose column vectors are linearly independent an \(n \) by \(n \) symmetric positive definite matrix \(C \). Set \(P = A(A^TCA)^{-1}A^T \).

(a) Show that \(A^TCA \) is invertible. (Thus, \(P \) is well-defined.)

It is invertible as \(A^TCA \) is the Gram matrix of the column vectors of \(A \) with respect to the inner product \(\langle x, y \rangle = x^T Cy \) and \(A \) has linearly independent columns by assumption.

(b) Prove that \(P^2 = P \) and \(C^{-1}P^T C = P \).

We have
\[
P^2 = A(A^TCA)^{-1}A^TCA(A^TCA)^{-1}A^T C = A(A^TCA)^{-1}A^T C = P.
\]
Also,
\[
C^{-1}P^T C = C^{-1}(CA(A^TCA)^{-1}A^T)C = A(A^TCA)^{-1}A^T C = P.
\]
Here we use the fact that \(C \) is symmetric.

(c) Prove that \(\text{im} \ P = \text{im} \ A \).

As \(P v = A((A^TCA)^{-1}A^T C)v \), we have \(\text{im} \ P \subset \text{im} \ A \). On the other hand, for any \(Av \in \text{im} \ A \), we have \(PA v = A(A^TCA)^{-1}A^T C Av = Av \), thus \(Av = PAv \in \text{im} \ P \), i.e. \(\text{im} \ A \subset \text{im} \ P \). Thus we have \(\text{im} \ P = \text{im} \ A \).

(d) Prove that \(P = I \) if \(A \) is a square matrix.

If \(A \) is square then \(A \) is invertible, thus
\[
P = A(A^TCA)^{-1}A^T C = A(A^{-1}C^{-1}(A^T)^{-1})A^T C = I.
\]
Or, as \(A \) is invertible we have \(\text{im} \ P = \text{im} \ A = \mathbb{R}^n \) which means that \(P \) is also invertible. As \(P^2 = P \), we should have \(P = I \).

(e) Prove that \((v - Pv) \perp \text{im} \ A \) for any \(v \in \mathbb{R}^n \) with respect to the inner product \(\langle x, y \rangle = x^T Cy \).
We need to show that \(\langle v - Pv, Aw \rangle = 0 \) for any \(v \in \mathbb{R}^n \) and \(w \in \mathbb{R}^m \). It is equivalent to that
\[
(v - Pv)^T CAw = 0 \quad \forall v \in \mathbb{R}^n, w \in \mathbb{R}^m
\]
\[
\Leftrightarrow v^T(I - P)^T CAw = 0 \quad \forall v \in \mathbb{R}^n, w \in \mathbb{R}^m
\]
\[
\Leftrightarrow (I - P)^T CA = 0 \Leftrightarrow (I - P^T)CA = 0
\]
\[
\Leftrightarrow CA = P^T CA \Leftrightarrow A = C^{-1}P^T CA \Leftrightarrow A = PA
\]
where the last step follows from (b). But \(PA = A(A^T CA)^{-1}A^T CA = A \), thus the statements above are all true.

2. Do Exercise 4.4.11. in OS18.

(a) \(P = \begin{pmatrix}
1 & -1 & -7 \\
-4 & 4 & 20 \\
-4 & 20 & 100 \\
-7 & 20 & 100
\end{pmatrix},
\)
\(Pv = \begin{pmatrix}
1 \\
-3 \\
-7 \\
10
\end{pmatrix} \)

(b) \(P = \begin{pmatrix}
1 & -1 & -7 \\
-4 & 4 & 20 \\
-4 & 20 & 100 \\
-7 & 20 & 100
\end{pmatrix},
\)
\(Pv = \begin{pmatrix}
1 \\
-3 \\
-7 \\
10
\end{pmatrix} \)

(c) \(P = \begin{pmatrix}
1 & -1 & -7 \\
-4 & 4 & 20 \\
-4 & 20 & 100 \\
-7 & 20 & 100
\end{pmatrix},
\)
\(Pv = \begin{pmatrix}
1 \\
-3 \\
-7 \\
10
\end{pmatrix} \)

(d) \(P = \begin{pmatrix}
1 & -1 & -7 \\
-4 & 4 & 20 \\
-4 & 20 & 100 \\
-7 & 20 & 100
\end{pmatrix},
\)
\(Pv = \begin{pmatrix}
1 \\
-3 \\
-7 \\
10
\end{pmatrix} \)

3. Do Exercise 5.2.1. in OS18.

If we set \(v = (x, y, z)^T \), then \(f(x, y, z) = v^T \begin{pmatrix}
1 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 1
\end{pmatrix} v - 2v^T \begin{pmatrix}
1 \\
0 \\
-3/2
\end{pmatrix} + 2 \). Thus
\[
\text{its global minimum is } 2 - \begin{pmatrix}
1 & 0 \\
0 & 3/2
\end{pmatrix} \begin{pmatrix}
1 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 1
\end{pmatrix}^{-1} \begin{pmatrix}
1 \\
0 \\
-3/2
\end{pmatrix} = -3/2. \text{ This is the global minimum by Theorem 5.2.}
4. Do Exercise 5.2.9. in [OS18].

By Theorem 5.2, its global minimum is \(-f^* K^{-1} f\) which is always nonpositive since \(K\) is positive definite. By the same reason, it is zero if and only if \(f = 0\), i.e. \(p(x)\) is homogeneous of degree 2.

5. Do Exercise 5.3.1. in [OS18].

If we set \(A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ -1 & 3 \end{pmatrix}\) and \(v = (1, 1, 1)^T\), then the closest point is given by
\[
A(A^T A)^{-1} A^T v = \left(\frac{6}{7}, \frac{38}{35}, \frac{36}{35}\right)^T.
\]
Also its distance from \(v\) is given by
\[
\sqrt{\left(-\frac{1}{7}\right)^2 + \left(\frac{3}{35}\right)^2 + \left(\frac{1}{35}\right)^2} = \frac{1}{\sqrt{35}}.
\]

6. Do Exercise 5.3.2. in [OS18].

(a) We set \(C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}\). Then the closest point is given by
\[
A(A^T CA)^{-1} A^T Cv = \left(\frac{151}{181}, \frac{190}{181}, \frac{185}{181}\right)^T
\]
and its distance from \(v\) is equal to
\[
\sqrt{2 \left(-\frac{30}{181}\right)^2 + 4 \left(\frac{9}{35}\right)^2 + 3 \left(\frac{4}{35}\right)^2} = \frac{\sqrt{12}}{181}.
\]

(b) We set \(C = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}\). Then the closest point is
\[
A(A^T CA)^{-1} A^T Cv = \left(\frac{6}{7}, \frac{15}{14}, \frac{15}{14}\right)^T
\]
and its distance from \(v\) is equal to
\[
\sqrt{(v - Pv)^T C(v - Pv)} = \frac{1}{\sqrt{14}}.
\]

— More Exercises Suggestions (these are not a part of homework): 4.4.9, 4.4.10, 4.4.15, 4.4.22, 4.4.28, 4.4.29, 4.4.31, 5.2.3, 5.2.4, 5.2.8, 5.2.11, 5.3.4, 5.3.9, 5.3.14, 5.3.15

REFERENCES