Self-Adjoint Operators and Zeros of L-functions

Who? Kim Klinger-Logan
From? University of Minnesota
When? March 2016

http://math.umn.edu/~kling202/Research.html
Approaches to RH

Pólya-Hilbert:
To prove the Riemann Hypothesis, find a self-adjoint operator for which zeros of $\zeta(s)$ are spectral parameters for eigenvalues $\lambda_s = s(s - 1)$.

Alain Connes' approach:
Form a self-adjoint operator whose eigenvalues $s(s - 1)$ are exactly given by zeros s of $\zeta(s)$ and then prove its self-adjointness via Guinand-Weil explicit formulas.

Haas–Hejhal–ColinDeVerdière story:
The opposite of the Connes' approach (as follows).
Approaches to RH

Pólya-Hilbert: To prove the Riemann Hypothesis, find a self-adjoint operator for which zeros of $\zeta(s)$ are spectral parameters for eigenvalues $\lambda_s = s(s - 1)$.

Alain Connes’ approach:
Form a self-adjoint operator whose eigenvalues $s(s - 1)$ are exactly given by zeros s of $\zeta(s)$ and then prove its self-adjointness via Guinand-Weil explicit formulas?!
Approaches to RH

Pólya-Hilbert:
To prove the Riemann Hypothesis, find a self-adjoint operator for which zeros of $\zeta(s)$ are spectral parameters for eigenvalues $\lambda_s = s(s - 1)$.

Alain Connes’ approach:
Form a self-adjoint operator whose eigenvalues $s(s - 1)$ are exactly given by zeros s of $\zeta(s)$ and then prove its self-adjointness via Guinand-Weil explicit formulas?!?!?

Haas–Hejhal–ColinDeVerdière story:
The opposite of the Connes’ approach (as follows).
The Story

1977 Haas attempted to numerically solve

\[(\Delta - \lambda_s)u = 0\]

on \(\Gamma \setminus \mathcal{H}\) for \(\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)\) and \(\lambda_s = s(s - 1)\).
The Story

1977 Haas attempted to numerically solve

$$(\Delta - \lambda_s)u = 0$$

on $\Gamma \setminus \mathcal{H}$ for $\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$ and $\lambda_s = s(s - 1)$.

...zeros of $\zeta(s)$ and $L(s, \chi_{-3})$?!
The Story

1977 Haas attempted to numerically solve

$$(\Delta - \lambda_s)u = 0$$

on $\Gamma \setminus \mathcal{H}$ for $\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$ and $\lambda_s = s(s - 1)$.

...zeros of $\zeta(s)$ and $L(s, \chi_{-3})$?!

1981 Hejhal realized Haas had actually solved

$$(\Delta - \lambda_s)u = \delta^\text{afc}_\omega$$

for δ^afc_ω the automorphic Dirac delta at $\omega = e^{2\pi i/3}$.
Now what? (ColinDeVerdière 1982-83)

1976 Lax & Phillips: For $a > 1$ and

$L^2_a(\Gamma \setminus \mathcal{H}) = \{ f \mid c_P(f(x)) = \int_0^1 f(x + iy) \, dx = 0 \text{ for } y > a \}$,

$\tilde{\Delta}_a$ has purely discrete spectrum

where $\tilde{\Delta}_a$ is the Friedrichs’ extension of Δ
restricted to $L^2_a(\Gamma \setminus \mathcal{H}) \cap C_\infty(\Gamma \setminus \mathcal{H})$ on $L^2(\Gamma \setminus \mathcal{H})$.

Lax & Phillips: For $a > 1$ and

$$L_a^2(\Gamma \backslash \mathcal{H}) = \{ f \mid c_P(f(x)) = \int_0^1 f(x + iy) \, dx = 0 \text{ for } y > a \},$$

$\tilde{\Delta}_a$ has purely discrete spectrum

where $\tilde{\Delta}_a$ is the Friedrichs’ extension of Δ restricted to $L_a^2(\Gamma \backslash \mathcal{H}) \cap C_c^\infty(\Gamma \backslash \mathcal{H})$ on $L^2(\Gamma \backslash \mathcal{H})$.

What happened to the continuous spectrum?

$$f = \sum_{F \text{ cusp}} \langle f, F \rangle F + \frac{\langle f, 1 \rangle \cdot 1}{\langle 1, 1 \rangle} + \frac{1}{4\pi i} \int_{(1/2)} \langle f, E_s \rangle E_s ds$$

for $f \in L^2(\Gamma \backslash \mathcal{H})$ decomposed wrt Δ

$$\wedge^a E_s = \left\{ \begin{array}{ll} E_s & y \leq a \\ E_s - (y^s - c_s y^{1-s}) & y > a \end{array} \right.$$

(on the fundamental domain) where $c_s = \frac{\xi(2s-1)}{\xi(2s)}$
Refining Observations

\[
(\tilde{\Delta}_a - \lambda_s)u = 0 \iff (\Delta - \lambda_s)u = c \cdot \eta_a \& \eta_a u = 0
\]
for some constant \(c\) and \(\eta_a f = c_P f(ia)\)
Refining Observations

\[(\tilde{\Delta}_a - \lambda_s)u = 0 \iff (\Delta - \lambda_s)u = c \cdot \eta_a \& \eta_a u = 0\]

for some constant \(c\) and \(\eta_a f = c_p f(ia)\)

We have \(\eta_a \in H^{-1/2-\epsilon} \subseteq H^{-1}\) but \(\delta^a_{\omega c} \in H^{-1-\epsilon}\). :/
Refining Observations

\[(\tilde{\Delta}_a - \lambda_s)u = 0 \iff (\Delta - \lambda_s)u = c \cdot \eta_a \& \eta_a u = 0\]

for some constant \(c\) and \(\eta_a f = c\mathcal{P}f(ia)\)

We have \(\eta_a \in H^{-1/2-\epsilon} \subseteq H^{-1}\) but \(\delta^{afc}_\omega \in H^{-1-\epsilon}\). \(\therefore\)

\[\text{proj}_{nc} \delta^{afc}_\omega = \theta \in H^{-3/4-\epsilon} \subseteq H^{-1}\]

(the desired Sobolev Space)
Refining Observations

\[(\tilde{\Delta}_a - \lambda_s)u = 0 \iff (\Delta - \lambda_s)u = c \cdot \eta_a \& \eta_a u = 0\]

for some constant \(c\) and \(\eta_a f = cPf(ia)\)

We have \(\eta_a \in H^{-1/2-\epsilon} \subseteq H^{-1}\) but \(\delta_{\omega}^{afc} \in H^{-1-\epsilon}\). :/

\[\text{proj}_{nc} \delta_{\omega}^{afc} = \theta \in H^{-3/4-\epsilon} \subseteq H^{-1}\]

(the desired Sobolev Space)

Theorem 0: Bombieri & Garrett (refining observations made by Hejhal and ColinDeVerdière) [2011]

discrete spectrum \(\lambda_s = s(s - 1)\) of \(\tilde{\Delta}_\theta\) (if any!) has spectral parameters \(s\)

\(\subseteq\)

online zeros of \(\zeta(s)L(s, \chi_{-3})\)
On the Inequality

The boundary condition $\eta_a u_s = 0$ gives

$$c_p(u_s) = \frac{(a^s + c_s a^{1-s})y^{1-s}}{1 - 2s} = 0$$

where $c_s = \frac{\xi(2s - 1)}{\xi(2s)}$.

Given $\varepsilon > 0$, for log log T sufficiently large, the minimum spacing between spectral parameters s and s' is at least $(1 - \varepsilon)\pi / \log T$.
On the Inequality

The boundary condition \(\eta_a u_s = 0 \) gives

\[
c_p(u_s) = \frac{(a^s + c_s a^{1-s}) y^{1-s}}{1 - 2s} = 0 \quad \text{where} \quad c_s = \frac{\xi(2s - 1)}{\xi(2s)}.
\]

Given \(\varepsilon > 0 \), for \(\log \log T \) sufficiently large, the minimum spacing between spectral parameters \(s \) and \(s' \) is at least \((1 - \varepsilon) \pi / \log T \).

Exotic eigenfunction expansions and regular spacing of \(\zeta \) on the edge of the critical strip is in conflict with Montgomery’s Pair Correlation:

Montgomery PCC:

\[
\sum_{0 < \gamma, \gamma' \leq T} 1 \sim \frac{T}{2\pi} \log T \int_{0}^{\beta} \left(1 - \left(\frac{\sin(\pi u)}{\pi u} \right)^2 \right) du
\]

for \(1/2 + i\gamma \) and \(1/2 + i\gamma' \) zeros of \(\zeta \).
More concisely...

Theorem 1: Bombieri & Garrett [2013]
Assuming Montgomery’s pair correlation conjecture at most 94% of the nontrivial zeros of $\zeta(s)$ can appear as spectral parameters s for λ_s.
More concisely...

Theorem 1: Bombieri & Garrett [2013]

Assuming Montgomery’s pair correlation conjecture at most 94% of the nontrivial zeros of $\zeta(s)$ can appear as spectral parameters s for λ_s.

all or nothing?
Negative results?

Check ‘simplest’ possible case ✓

Clarifying the details alone took 30 years. Even then a conclusion is reached only by some serious operator-theory, Montgomery pair correlation and regular edge behavior of $\zeta(s)$.
Negative results?

Check ‘simplest’ possible case

Clarifying the details alone took 30 years. Even then a conclusion is reached only by some serious operator-theory, Montgomery pair correlation and regular edge behavior of $\zeta(s)$.

Investigate other possible more complicated boundary-value problems
Negative results?

- Check ‘simplest’ possible case ✓

Clarifying the details alone took 30 years. Even then a conclusion is reached only by some serious operator-theory, Montgomery pair correlation and regular edge behavior of $\zeta(s)$.

- Investigate other possible more complicated boundary-value problems

What is the potential scope of such results?
A Noncompact Period

Let $[\tilde{k} : k] = 2$.
A Noncompact Period

Let $[\tilde{k} : k] = 2$.

E_s an Eisenstein series on $G = \text{Res}_k^{\tilde{k}}(GL_2(\tilde{k}))$ \cup f a cuspform on $H = GL_2(k)$
A Noncompact Period

Let $[\tilde{k} : k] = 2$.

E_s an Eisenstein series on $G = \text{Res}_{k}^{\tilde{k}}(GL_2(\tilde{k}))$
\[\cup \]
f a cuspform on $H = GL_2(k)$

L-function:
\[\int_{Z_\mathbb{A}H_k \backslash H_\mathbb{A}} f(g) \cdot \text{Res}_{H}^{G} E_s(g) \, dg \]
A Noncompact Period

Let $[\tilde{k} : k] = 2$.

E_s an Eisenstein series on $G = \text{Res}_k^\tilde{k}(GL_2(\tilde{k}))
\cup
f$ a cuspform on $H = GL_2(k)$

L-function:

$$\int_{Z_A H_k \backslash H_A} f(g) \cdot \text{Res}_H^G E_s(g) \, dg \quad \leftarrow \quad \text{Euler product!}$$

↑ by standard unwinding
and local multiplicity-one results
A Noncompact Period

Let $[\tilde{k} : k] = 2$.

E_s an Eisenstein series on $G = \text{Res}^\tilde{k}_k(\text{GL}_2(\tilde{k}))$

\cup

f a cuspform on $H = \text{GL}_2(k)$

L-function:

$$\int_{Z_\mathbb{A} H_k \backslash H_\mathbb{A}} f(g) \cdot \text{Res}_H^G E_s(g) \, dg \quad \leftarrow \quad \text{Euler product!}$$

↑ by standard unwinding and local multiplicity-one results

Let

$E = \text{subset of } L^2(Z_\mathbb{A} G_k \backslash G_\mathbb{A}) \text{ gen by Eisenstein series with trivial grossencharacter,}$

$$\int_{(1/2)} A_s \cdot E_s = F \in E \text{ and } \theta : F \to \int_{Z_\mathbb{A} H_k \backslash H_\mathbb{A}} f \cdot F$$

so that θE_s is an L-function.
Results

Key Lemma:

\[\theta \left(\int_{(1/2)} A_s \cdot E_s \ ds \right) = \int_{(1/2)} A_s \cdot \theta E_s \ ds \]
Results

Key Lemma:

\[\theta \left(\int_{(1/2)} A_s \cdot E_s \; ds \right) = \int_{(1/2)} A_s \cdot \theta E_s \; ds \]

\& \quad 2^{nd} \text{ moment bound } \Rightarrow \theta \in H^{-1}(Z_A G_k \setminus G_A).
Results

Key Lemma:

$$\theta \left(\int_{(1/2)} A_s \cdot E_s \, ds \right) = \int_{(1/2)} A_s \cdot \theta E_s \, ds$$

&

2nd moment bound $\Rightarrow \theta \in H^{-1}(Z_A G_k \setminus G_A)$.

1st Main Result:

Let $S = \tilde{\Delta}_\theta$,

discrete spectrum of S (if any) has spectral parameters $s \subseteq$ online zeros of θE_s.
Results

Key Lemma:
\[
\theta \left(\int_{(1/2)} A_s \cdot E_s \, ds \right) = \int_{(1/2)} A_s \cdot \theta E_s \, ds
\]

& 2^{nd} moment bound \Rightarrow \theta \in H^{-1}(Z_\mathbb{A} G_k \setminus G_\mathbb{A}).

1^{st} Main Result:
Let \(S = \tilde{\Delta}_\theta \),
discrete spectrum of \(S \) (if any) has spectral parameters \(s \subseteq \) online zeros of \(\theta E_s \).

2^{nd} Main Result:
Exotic eigenfunction expansion and regular edge behavior of \(\zeta_{\tilde{\kappa}}(s) \) and pair correlation yields a strict inequality.
Thanks!