Now that we are much more comfortable calculating limits, we are ready to begin calculating derivatives. *You may want to be aware that this worksheet contains two of the most important concepts of the semester. So it may be beneficial to re-read this handout regularly until the concepts are solidified.

Derivatives and Rates of Change

Recall the 2.1 worksheet. Here, we were trying to calculate the instantaneous rate of change of a falling object. This instantaneous rate of change is what we call the **derivative**.

How would you calculate the rate of change of a function \(f(x) \) between the points \(x = a \) and \(x = b \)?

Sketch a picture/graph that describes what is happening in the previous formula.

If \(f \) were a linear function, this value would calculate the **slope** of that line.

Since \(f \) may not be a linear function, we say that this value is calculating the **slope of the secant line** through \((a, f(a))\) and \((b, f(b))\) of \(f \).

However, what we want to find is the **slope of the tangent line** at one particular point \((a, f(a))\). This will give us the **instantaneous** rate of change.

| Definition | Tangent line to the curve \(y = f(x) \) at the point \((a, f(a))\) is the line through \((a, f(a))\) with slope \[m = \lim_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} \] provided that this limit exists. |

Explain why \(m \) models that instantaneous rate of change of \(f \) at \((a, f(a))\). (You may want to use your graph/picture.)
Use the previous definition to find the equation of the tangent line to \(f(x) = x^2 \) at \((2, 4)\).

Now, setting \(h = x - a \) in the previous definition, rewrite the formula for the slope of the tangent line in terms of \(x \) and \(h \).

We call this result the derivative.

Definition

The **derivative of a function \(f \) at a number \(a \)**, denoted \(f'(a) \), is denoted

\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
\]

if this limit exists.

Because this is just a rewriting of our previous definition of the slope of the tangent line,

the derivative of a function \(f \) at a number \(a \), \(f'(a) \), is the slope of the line tangent to \(f \) at the point \((a, f(a))\).

In other words,

the derivative \(f'(a) \) is also the instantaneous rate of change of \(y = f(x) \) with respect to \(x \) at \(x = a \).
Examples

1. Find an equation for the tangent line to the curve $f(x) = x^2 - 3$ at $x = 3$.
 In order to do this, we must...
 (a) Find the derivative of $f(x) = x^2 - 3$, $f'(x)$, using the definition of the derivative.

 (b) Evaluate $f'(3)$.

 (c) Use $f'(3)$ and the point $(3, f(3))$ to find an equation for the tangent line to the curve $f(x) = x^2 - 3$ at $x = 3$.

2. Find an equation for the tangent line to the curve $f(x) = \sqrt{x}$ at $x = 4$.
3. If a rock is thrown upward on Mars with velocity 10 m/s, its height (in meters) after t seconds is given by $h(t) = 10t - 1.86t^2$.

Recall that the derivative $h'(a)$ is also the instantaneous rate of change of $y = h(x)$ with respect to x at $x = a$. This means it is the instantaneous velocity of $h(x)$ with respect to x at $x = a$.

(a) Find the velocity of the rock when $t = a$

(b) Find the velocity of the rock after one second.

(c) When did the rock hit the ground?

(d) With what velocity will the rock hit the ground?