Computation

1. If $f(1) = 4$, $f'(1) = 2$, $g(1) = 1$, and $g'(1) = -3$, find
 a. $(fg)'(1)$
 b. $(\frac{f}{f+g})'(1)$
 c. $(f \circ g)'(1)$

2. Differentiate the following. (Only minimal simplification is expected.)
 (a) $f(x) = 3x^2 - 2x + \pi$
 (b) $f(x) = x^5 e^x$
 (c) $\ln\left(\frac{\cos(x)}{x}\right)$
 (d) $f(x) = \sin x - 2 \tan x$
(e) \(f(x) = -6 \arcsin(\sqrt{x}) \)

(f) \(f(x) = \cos(\cos(\cos x)) \)

3. Find the equation for the tangent line to the function \(f(x) = \frac{1-x}{x+2} \) at \(x = 2 \).

4. Find \(\frac{dy}{dx} \) using implicit differentiation on the equation \(x^2 - 3xy + y^2 = 18 \).
5. You don’t have your calculator but you need to know the value of \(\sin(3.25) \). You do know, of course, that \(\sin(\pi) = 0 \) and that \(\cos(\pi) = -1 \). Further, you know that \(3.25 = \pi + 0.11 \). Find the linearization (a.k.a. tangent line approximation) of \(\sin(x) \) at \(a = \pi \) and use it to estimate \(\sin(3.25) \).

6. Use linear approximation or differentials to estimate the value of:
 a. \((1.01)^8 \)
 b. \(\frac{1}{1002} \)

7. If a rock is thrown upward with an initial velocity of 80 ft/s then the height after \(t \) seconds is \(h(t) = 80t - 16t^2 \).
 a. What is the velocity of the stone after 2 seconds?
 b. What is the velocity of the rock when it is 96 ft above the ground on the way up?
8. A particle moves on a vertical line so that its coordinate at time \(t \) is \(y = t^3 - 12t + 3, \ t \geq 0 \).
 a. Find the velocity and acceleration functions.
 b. When is the particle moving upwards and when is it moving downwards?

9. Find the points on the ellipse \(x^2 + 2y^2 = 1 \) where the tangent line has slope \(a \).

Proofs

10. Given that \(\cot x = \frac{\cos x}{\sin x} \), find, using the quotient rule, the derivative of \(\cot x \).
11. Using implicit differentiation on the equation \(x = \sin(y) \), find the differentiation formula for \(y = \arcsin(x) \).