The Substitution Rule

Warm-Up
Evaluate the following definite integrals:

1. \(\int_0^1 x^{4/5} \, dx \)

2. \(\int_{-5}^{5} e \, dx \)

3. \(\int_{-1}^{1} t(1 - t)^2 \, dt \)

4. \(\int_1^2 \frac{v^3 + 3v^6}{v^4} \, dv \)

The Indefinite Integral
The information that we have at this point is sufficient to compute the previous integrals. However, it is not too difficult to imagine a function that we would be unable to integrate at this point.

For instance,

\[\int 2x\sqrt{1 + x^2} \, dx. \]

We cannot algebraically simplify \(2x\sqrt{1 + x^2} \) like in the last two Warm-Up exercises. So instead, we will introduce a new variable.

In this particular example, our variable that we will want to introduce is \(u = 1 + x^2 \).
Now, find the differential of this new variable $u = 1 + x^2$.

Referring back to our integral, notice that

$$\int 2x\sqrt{1 + x^2} \, dx = \int \sqrt{1 + x^2} \cdot 2x \, dx = \int \sqrt{u} \, du.$$

Now, integrate $\int \sqrt{u} \, du$.

Note: Don’t forget the ‘$+C$’ since this is an indefinite integral!

Finally, substitute $u = 1 + x^2$ back in for u.

That is your integral!
Check to make sure that your integration is correct.

Notice that this technique (often referred to as ‘u-substitution’) can be thought of as the integration equivalent to the Chain Rule.

The Substitution Rule

If $u = g(x)$ is a differentiable function whose range is an interval I and f and continuous on I, then

$$\int f(g(x))g'(x) \, dx = \int f(u) \, du$$
Examples

Evaluate the following indefinite integrals:

1. \(\int x \sin(x^2) \, dx \)

2. \(\int \frac{x}{(x^2+1)^2} \, dx \)

3. \(\int e^x \cos(e^x) \, dx \)

The Definite Integral

Since we have already computed \(\int 2x\sqrt{1+x^2} \, dx \), we know \(F(x) \) (an antiderivative of \(2x\sqrt{1+x^2} \)).

\[
\int_{-1}^{2} 2x\sqrt{1+x^2} \, dx.
\]

Since we have already computed \(\int 2x\sqrt{1+x^2} \, dx \), we know \(F(x) \) (an antiderivative of \(2x\sqrt{1+x^2} \)).

We have two options for how we want to compute the definite integral...

Option 1:
We can use the *Evaluation Theorem* (or Part 2 of the Fundamental Theorem of Calculus) in order to figure out how to apply u-substitution to evaluate definite integrals.
Option 2:
Use the Substitution Rule for Definite Integrals.

The Substitution Rule for Definite Integrals

If \(g' \) is continuous on \([a, b]\) and \(f \) is continuous on the range of \(u = g(x) \), then

\[
\int_a^b f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du
\]

Examples

Evaluate the following definite integrals:

1. \(\int_0^1 \cos(\pi t/2) \, dt \)

2. \(\int_0^1 \sqrt{1 + 7x} \, dx \)
3. \(\int_{1}^{e} \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx \)

4. \(\int_{0}^{1} \frac{e^{x}+1}{e^{x}+z} \, dz \)

5. \(\int_{e}^{e^{4}} \frac{dx}{x \ln x} \)

6. \(\int_{\pi/2}^{\pi} \cos x \sin(\sin x) \, dx \)