Differentiability an Continuity

As we have already discussed, not all limits exist. Because of this it is easy to imagine how a function may not have a derivative (if that limit does not exist). When this happens we say that the function is \textit{not differentiable} at the point \(a \).

Geometrically this means that either the function does not have a tangent line at \(a \) or that it has a vertical tangent line at \(a \).

\textbf{Examples:}

Differentiability is closely related to continuity. You probably have an informal idea of what continuity is.

More formally, continuity can be defined using limits:

\begin{center}
\textbf{Continuity}

A function \(f(x) \) is \textbf{continuous} at \(x = a \) provided that
\end{center}

\textbf{Examples:}

It is important to note that \textit{continuity does not necessarily imply differentiability}. However,

\begin{center}
\textbf{Theorem 1}

If \(f(x) \) is differentiable at \(x = a \) then \(f(x) \) is continuous at \(x = a \).
\end{center}
Examples: Determine whether each of the following functions is continuous and/or differentiable.

1. \(f(x) = \begin{cases} x & \text{for } x \neq 1 \\ 2 & \text{for } x = 1 \end{cases} \)

2. \(g(x) = \begin{cases} x^3 & \text{for } 0 \leq x < 1 \\ x & \text{for } 1 \leq x \leq 2 \end{cases} \)

More Rules for Differentiation

We have already discussed the Power Rule for differentiation. Two other useful rules will help us to differentiate polynomial in general.

<table>
<thead>
<tr>
<th>Differentiation Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Constant Multiple Rule: for (k) a constant, (\frac{d}{dx}[k \cdot f(x)] =)</td>
</tr>
<tr>
<td>2. Sum Rule: (\frac{d}{dx}[f(x) + g(x)] =)</td>
</tr>
<tr>
<td>3. Power Rule: (\frac{d}{dx}[(g(x))^r] =)</td>
</tr>
</tbody>
</table>

Examples:

1. \(\frac{d}{dx}[3x^2] = \)

2. \(\frac{d}{dx}[x^9 + \sqrt{x}] = \)

3. \(\frac{d}{dx}[(2x + 1)^3] = \)

Proofs of Rules 1 and 2

What other results do you think that we will need to use in order to prove that these rules are true?
proof of the Constant Multiple Rule: Assume \(f(x) \) is differentiable at \(x = a \).

What we want to show is that \(k \cdot f(x) \) is also differentiable at \(x = a \) and that its derivative is \(k \cdot f'(x) \) so we should examine

\[
\frac{d}{dx}[k \cdot f(x)] =
\]

proof of the Sum Rule:

Examples:

1. Find the following.

 (a) \(\frac{d}{dx} \left[\frac{3}{x} \right] \)

 (b) \(\frac{d}{dx} [x^4 - 2x] \)

 (c) \(\frac{d}{dx} [3x^7 - x^5 + 17] \)

 (d) \(\frac{d}{dx} \left[\frac{2}{x + 1} \right] \)
(e) \(\frac{d}{dx} \left[\sqrt{x^2 - 1} \right] \)

(f) \(\frac{d}{dx} \left[2x^8 - 6x^2 + x + \frac{3}{x} \right] \)

(g) \(\frac{d}{dx} \left[5 \sqrt{1 + x^3} \right] \)

(h) \(\frac{d}{dx} \left[x + 3 + \sqrt{x + 3} \right] \)

(i) \(\frac{d}{dx} \left[12 + \frac{1}{7^3} \right] \)

(j) \(\frac{d}{dx} \left[\left(x - \frac{1}{x} \right)^{-1} \right] \)

(k) \(\frac{d}{dx} \left[(x^2 + 1)^2 + 3(x^2 - 1)^2 \right] \)
2. Find the equation of the tangent line to

\[y = \frac{8}{x^2 + x + 2} \]

at \(x = 2 \).