1. The following definition of \textit{concavity} appears in a calculus text:

\[f \text{ is concave upwards on an interval } I \text{ if on the interval } I \text{ the graph of } f \text{ appears above all its tangents.} \]

Write out an abbreviation of the statements in italics, using some or all of the symbols \(f, f', I, \mathbb{R}, ||, \neg, \forall, \exists, \& , \lor, (,). \)

2. Let \(A \) be a set of real numbers. Express each of the following properties in abbreviated form, using abbreviations \(\Rightarrow, \Leftrightarrow, \& , \lor, \exists, \forall \), other common math symbols such as \(<, +, \times, \text{ etc} \), and names \(\mathbb{N}, \mathbb{Q}, \mathbb{R} \).

Then write out the negation of the statements in abbreviated form and simplify the statement by moving the negation symbol 'inside' as far as possible.

(a) \(A \) has no smallest member.

(b) Between any two distinct members of \(A \) there is an integer.

(c) There are two distinct members of \(A \) with no member of \(A \) in between.
(d) π is the only irrational member of A.

(e) If these is a positive number in A, then A contains no rational numbers.

3. Let p be a polynomial of positive degree with coefficients from \mathbb{N}. That is, p is a function of the form

$$p(x) = a_0 + a_1x + \cdots + a_nx^n$$

where each of a_0, \ldots, a_n is a non-negative integer, $a_n \neq 0$, and n is a positive integer.

(a) Show that if $a_0 \neq 1$, then there is some $k \in \mathbb{N}$ such that $p(k)$ is not a prime number.

(b) So you think that conclusion of (a) still holds if $a_0 = 1$?