Sequences

As sequence is a function whose domain is of the form ______.

We write

\[\lim_{n \to \infty} s_n = L \text{ if} \]

Examples:

For each sequence reason informally to determine whether or not it is convergent, and if convergent, to find its limit \(L \).

If your reasoning indicates that the limit should be \(L \), use the definition of a sequence to show that in fact \(\lim s_n = L \).

If your reasoning indicates that the sequence is divergent, show this by using the definition of a sequence to show that in fact \(\lim s_n = L \) or Note 1.12.

1. \(s_n = \frac{1}{n^2} \)
2. $s_n = (-1)^n$

3. $s_n = \frac{\sin n}{n}$
4. \[s_n = \frac{2n^2 - 3n}{3n^2 + 1} \]

Limit Theorems

Theorem 2.1

Suppose \(\lim s_n = L_1 \), \(\lim t_n = L_2 \) and \(c \in \mathbb{R} \), then

(a) \(\lim(s_n + t_n) = L_1 + L_2 \);
(b) \(\lim cs_n = cL_1 \)
(c) \(\lim s_n t_n = L_1 L_2 \);
(d) \(\lim \frac{s_n}{t_n} = \frac{L_1}{L_2} \) provided \(L_2 \neq 0 \) and \(\forall n \{t_n \neq 0\} \).

Examples:

1. Use Theorem 2.1 to show that \(\frac{2n^3 + 5n^2 - 7n - 13}{5n^3 + 6n + 3} \) is convergent.
2. Prove Theorem 2.1 part (b).