What is a **parametrized surface** and how does it differ from a parametrized **curve**?

Smooth

A parametrized surface $S = \mathbf{X}(D)$ is **smooth** at $\mathbf{X}(s_0, t_0)$ if the map \mathbf{X} is of class C^1 in a neighborhood of (s_0, t_0) and if the vector

Surface Area of S

1. Consider the parametrized surface $X(s, t) = (s^2 \cos t, s^2 \sin t, s)$ for $-3 \leq s \leq 3$, $0 \leq t \leq 2\pi$.

 (a) Find the normal vector at $(s, t) = (-1, 0)$. Is X smooth at $(-1, 0)$?

 (b) Determine the tangent plane at the point $(1, 0, -1)$.

 (c) Find an equation for the image of X in the form $F(x, y, z) = 0$.

2. Given the sphere of radius 2 centered at $(2, -1, 0)$ find an equation for the plane tangent to it at the point $(1, 0, \sqrt{2})$ in three ways:

 (a) by constructing the sphere as the graph of the function $f(x, y) = \sqrt{4 - (x - 2)^2 - (y + 1)^2}$.

 (b) by constructing the sphere as level surface of the function $F(x, y, z) = (x - 2)^2 - (y + 1)^2 + z^2$.

 (c) by constructing the sphere as the surface parametrized by $X(s, t) = (2 \sin s \cos t + 2, 2 \sin s \sin t - 1, 2 \cos s)$.
3. Represent the surface given by lower hemisphere \(x^2 + y^2 + z^2 = 9\) including the equatorial circle as a piecewise smooth parametrized surface.

4. Recall that the torus is parametrized by

\[
\begin{align*}
 x &= (a + b \cos t) \cos s \\
 y &= (a + b \cos t) \sin s \\
 z &= b \sin t
\end{align*}
\]

for \(0 \leq s, t \leq 2\pi\) and \(a > b > 0\).

Find the surface area of the torus.
5. Find the area of the surface cut from the paraboloid \(z = 2x^2 + 2y^2 \) by the planes \(z = 2 \) and \(z = 8 \).

Surface Integrals (7.2)

Surface Integrals

Let \(\mathbf{X} : D \to \mathbb{R}^3 \) be a smooth parametrized surface where \(D \subset \mathbb{R}^2 \) is a bounded region. Let \(f \) be a continuous function whose domain includes \(S = \mathbf{X}(D) \). Then the **scalar surface integral** of \(f \) along \(\mathbf{X} \) is

\[
\int \int_{\mathbf{X}} f \, dS =
\]

Let \(\mathbf{F}(x,y,z) \) be a continuous vector field whose domain includes \(S = \mathbf{X}(D) \). Then the **vector surface integral** of \(\mathbf{F} \) along \(\mathbf{X} \) is

\[
\int \int_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} =
\]
6. Compute the scalar or vector surface integral where appropriate.

(a) \(\int \int_X z^3 \, dS \) where \(X : [0, 2\pi] \times [0, \pi] \rightarrow \mathbb{R}^3 \) is the parametrized sphere of radius \(a \)

(b) \(\int \int_X \mathbf{F} \cdot d\mathbf{S} \) where \(\mathbf{F} = x\mathbf{i} + y\mathbf{j} + (z - 2y)\mathbf{k} \) where \(X(s, t) = (s \cos t, s \sin t, t) \) for \(0 \leq s \leq 1 \) and \(0 \leq t \leq 2\pi \)
(c) \[\int_S xyz \, dS \] for \(S \) a closed cylinder with bottom given by \(z = 0 \) and top given by \(z = 4 \) and lateral surface given by \(x^2 + y^2 = 9 \) (orient \(S \) with outward normals)

(d) \[\int_S y^3i \cdot d\mathbf{S} \] for \(S \) as in (c)

Stokes' and Gauss' Theorems (7.3)

Stokes' Theorem

Let \(S \) be a bounded, piecewise smooth, oriented surface in \(\mathbb{R}^3 \). Suppose that \(\partial S \) consists of finitely many piecewise \(C^1 \), simple, closed curves each of which is oriented consistently with \(S \). Let \(\mathbf{F} \) be a vector field of class \(C^1 \) whose domain includes \(S \). Then

\[
\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} =
\]
7. Verify Stokes’ Theorem for the surface S defined by $x^2 + y^2 + 5z = 1, z \geq 0$, oriented by upward normal, and $\mathbf{F} = xz\mathbf{i} + yz\mathbf{j} + (x^2 + y^2)\mathbf{k}$

8. Use Stokes’ Theorem to find the work done by the vector field $\mathbf{F} = (xyz - e^x)\mathbf{i} - xyz\mathbf{j} + (x^2yz + \sin z)\mathbf{k}$ on a particle that moves along the line segments from $(0,0,0)$, then to $(1,1,1)$, then to $(0,0,2)$, then back to $(0,0,0)$.
Gauss’ Theorem

Let D be a bounded solid region in \mathbb{R}^3 whose boundary ∂D consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from D. Let \mathbf{F} be a vector field of class C^1 whose domain includes D. Then

$$\iint_{\partial D} \mathbf{F} \cdot d\mathbf{S} =$$

9. Verify Gauss’ Theorem for the region $D = \{(x, y, z) \mid a^2 \leq x^2 + y^2 + z^2 \leq b^2\}$ and the vector field $\mathbf{F} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}}$.

10. Use Gauss’ Theorem to find the volume of the solid region bounded by the paraboloids $z = 9 - x^2 - y^2$ and $z = 3x^2 + 3y^2 - 16$.

11. Let \(n(x, y, z) \) be a unit normal to a surface \(S \). The directional derivative of a differentiable function \(f(x, y, z) \) in the direction of \(n \) is called the normal derivative of \(f \), denoted \(\partial f/\partial n \). From Theorem 6.2 of Chapter 2, we have

\[
\frac{\partial f}{\partial n} = \nabla \cdot n.
\]

(a) Let \(S \) denote the portion of the sphere \(x^2 + y^2 + z^2 = a^2 \) in the first octant \((x, y, z \geq 0) \), oriented by the unit normal that points away from the origin. Let \(f(x, y, z) = \ln(x^2 + y^2 + z^2) \). Evaluate

\[
\oint_S \frac{\partial f}{\partial n} dS.
\]

(b) Let \(D \) denote the piece of the solid ball \(x^2 + y^2 + z^2 \leq a^2 \) in the first octant. Compute \(\iiint_D \nabla \cdot (\nabla f) dV \), where \(f \) is as in part (a).
(c) Apply Gauss’ Theorem to the integral in part (b), and reconcile your result with the answer in part (a).