Manifold clustering in non-Euclidean spaces

Xu Wang ¹ Konstantinos Slavakis ² Gilad Lerman ¹

¹Department of Mathematics, University of Minnesota

²Department of ECE and Digital Technology Center, University of Minnesota

February 4, 2015

・吊り ・ヨト ・ヨト

Examples	Non-Euclidean data representation
Image texture	Symmetric positive definite matrix
Linear dynamic system	Grassmannian (subspaces)
Shape of 2D (3D) object	Shape space
•••	Stiefel, <i>SE</i> (3), Lie group etc.

・ロト ・回 ト ・ヨト ・ヨー

Examples	Non-Euclidean data representation
Image texture	Symmetric positive definite matrix
Linear dynamic system	Grassmannian (subspaces)
Shape of 2D (3D) object	Shape space
•••	Stiefel, <i>SE</i> (3), Lie group etc.

 Goal: Cluster such data sets (especially when clusters lie on low-dimensional submanifolds that may intersect)

回 と く ヨ と く ヨ と

æ

Clustering for Euclidean vectors

Figure : K-means

Figure : Spectral clustering

Spectral clustering contains two steps:

• weights
$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2}$$

-

3

Spectral clustering contains two steps:

• weights
$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2}$$

 d(x_i, x_j) can be any metric. This leads to a version of spectral clustering with Riemannian metric (SCR)

Hybrid linear modeling (subspace clustering)

4 3 b

æ

Hybrid linear modeling (subspace clustering)

• weights
$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2}$$

4 3 b

æ

Hybrid linear modeling (subspace clustering)

- weights $A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2}$
- Methods (e.g., SCR) with only distance information, fail at the intersection!

▶ For each point x_i, solve the following sparse optimization

$$\min \sum_{j \neq i} |w_{ij}| + \lambda \|\mathbf{x}_i - \sum_{j \neq i} w_{ij} \mathbf{x}_j\|^2 \qquad s.t. \ \sum_{j \neq i} w_{ij} = 1$$

(4) (5) (4) (5) (4)

► For each point x_i, solve the following sparse optimization

$$\min \sum_{j \neq i} |w_{ij}| + \lambda \|\mathbf{x}_i - \sum_{j \neq i} w_{ij} \mathbf{x}_j\|^2 \qquad s.t. \ \sum_{j \neq i} w_{ij} = 1$$

The top nonzero coefficients come from points in the same subspace

ヨット イヨット イヨッ

► For each point x_i, solve the following sparse optimization

$$\min \sum_{j \neq i} |w_{ij}| + \lambda \|\mathbf{x}_i - \sum_{j \neq i} w_{ij} \mathbf{x}_j\|^2 \qquad s.t. \ \sum_{j \neq i} w_{ij} = 1$$

The top nonzero coefficients come from points in the same subspace

$$\bullet A_{ij} = |w_{ij}| + |w_{ji}|$$

ヨット イヨット イヨッ

Naive generalization: Sparse manifold clustering (SMC)

For each point \mathbf{x}_i , solve the following sparse optimization

$$\min \sum_{j \neq i} |w_{ij}| + \lambda \|\log_{\mathbf{x}_i} \mathbf{x}_i - \sum_{j \neq i} w_{ij} \log_{\mathbf{x}_i} \mathbf{x}_j\|^2$$

Linearization: logarithm map log_{xi} maps all points to the tangent space T_{xi} at x_i

ヨト イヨト イヨト

For each point \mathbf{x}_i , solve the following sparse optimization

$$\min \sum_{j \neq i} |w_{ij}| + \lambda \|\log_{\mathbf{x}_i} \mathbf{x}_i - \sum_{j \neq i} w_{ij} \log_{\mathbf{x}_i} \mathbf{x}_j\|^2$$

- Linearization: logarithm map log_{xi} maps all points to the tangent space T_{xi} at x_i
- Limitation: this linearization introduces a lot of error when x_i and x_j are far away.

Image: A Image: A

For each point \mathbf{x}_i , solve the following sparse optimization

$$\min \sum_{j \neq i} |w_{ij}| + \lambda \|\log_{\mathbf{x}_i} \mathbf{x}_i - \sum_{j \neq i} w_{ij} \log_{\mathbf{x}_i} \mathbf{x}_j\|^2$$

- Linearization: logarithm map log_{xi} maps all points to the tangent space T_{xi} at x_i
- Limitation: this linearization introduces a lot of error when x_i and x_j are far away.
- No guarantee! The top nonzero coefficients may not come from points in the same cluster.

直 とう きょう うちょう

- ► SCR: $A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2}$ (trouble at the intersection!)
- SMC: $A_{ij} = |w_{ij}| + |w_{ji}|$ (no guarantee for manifolds!)
- GCT (resolving intersection, theoretical guarantee)
- GCT stands for Geodesic Clustering with Tangents

伺 とう ヨン うちょう

The local PCA algorithm

3

æ

The local PCA algorithm

Multi-manifold model
 A_{ij} = e<sup>-d²(x_i,x_j)/σ²e^{-||C_i-C_j||²/η²} where C_i is the covariance matrix computed from points in a neighborhood of x_i.
</sup>

Generalization of local PCA to Riemannian spaces

How to generalize it to Riemannian manifolds?

$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} e^{\|\mathbf{C}_i - \mathbf{C}_j\|^2/\eta^2}$$

向下 イヨト イヨト

$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} e^{\|\mathbf{C}_i - \mathbf{C}_j\|^2/\eta^2}$$

▶ what is the covariance matrix of a set {x₁,..., x_n} in Riemannian spaces?

伺い イヨト イヨト

$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} e^{\|\mathbf{C}_i - \mathbf{C}_j\|^2/\eta^2}$$

- ▶ what is the covariance matrix of a set {x₁,...,x_n} in Riemannian spaces?
 - ► C_{xi}: Covariance of the vectors log_{xi} x₁, ..., log_{xi} x_n in the tangent space T_{xi}

向下 イヨト イヨト

$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} e^{\|\mathbf{C}_i - \mathbf{C}_j\|^2/\eta^2}$$

- ▶ what is the covariance matrix of a set {x₁,...,x_n} in Riemannian spaces?
 - ► C_{xi}: Covariance of the vectors log_{xi} x₁, ..., log_{xi} x_n in the tangent space T_{xi}
- ▶ How to compute the difference of **C**_{*i*} and **C**_{*j*}?

伺 と く き と く き と

$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} e^{\|\mathbf{C}_i - \mathbf{C}_j\|^2/\eta^2}$$

- ▶ what is the covariance matrix of a set {x₁,...,x_n} in Riemannian spaces?
 - ► C_{xi}: Covariance of the vectors log_{xi} x₁, ..., log_{xi} x_n in the tangent space T_{xi}
- ▶ How to compute the difference of **C**_{*i*} and **C**_{*j*}?
 - (Caution!) C_i and C_j are quantities in different tangent spaces
 T_{xi} and T_{xj} and their values depend on the particular coordinate system chosen in each tangent space.

Generalization of local PCA to Riemannian spaces

Problem: identify vectors at the north and south poles

Problem: identify vectors at the north and south poles

Implication: can't compare C_i and C_j in a consistent way on S²!

Theorem (Hairy ball theorem)

There is no nonvanishing continuous tangent vector field on any even-dimensional n-spheres, particularly, on \mathbb{S}^2 .

Theorem (Hairy ball theorem)

There is no nonvanishing continuous tangent vector field on any even-dimensional n-spheres, particularly, on \mathbb{S}^2 .

Think about the hair whorl!

Theorem (Hairy ball theorem)

There is no nonvanishing continuous tangent vector field on any even-dimensional n-spheres, particularly, on \mathbb{S}^2 .

Think about the hair whorl!

ヨト イヨト イヨト

This is a special case of Poincaré-Hopf index theorem for general manifolds in differential topology. There is no hope to find nonzero vector fields on general manifolds, let alone consistent coordinate systems.

$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} e^{\|\mathbf{C}_i - \mathbf{C}_j\|^2/\eta^2}$$

Dead end?

白 と く ヨ と く ヨ と …

æ

$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} e^{\|\mathbf{C}_i - \mathbf{C}_j\|^2/\eta^2}$$

Dead end?

Problem: C_i depends on coordinate systems, in other words, "not intrinsic".

Solution: find coordinate-independent quantities!

ゆ く き と く き と

Geodesic Clustering with Tangents (GCT) Quantities independent of coordinate systems

Find the <u>local dimension</u> of the data by thresholding the top eigenvalues of the covariance matrix under any coordinate system.

$$A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} \mathbf{1}_{\dim(x_i) = \dim(x_j)}$$

Geodesic Clustering with Tangents (GCT) Quantities independent of coordinate systems

Find the <u>local dimension</u> of the data by thresholding the top eigenvalues of the covariance matrix under any coordinate system.

 $A_{ij} = e^{-d^2(x_i, x_j)/\sigma^2} \mathbf{1}_{\dim(x_i) = \dim(x_j)}$

Caution!

Geodesic Clustering with Tangents (GCT)

Quantities independent of coordinate systems

- *T*_{xi} is the tangent space at point x_i
- Find the geodesic angle θ_{ij} of any two points x_i and x_j

Geodesic Clustering with Tangents (GCT)

Quantities independent of coordinate systems

- *T*_{xi} is the tangent space at point x_i
- Find the geodesic angle θ_{ij} of any two points x_i and x_j

•
$$\theta_{ij} \ll \theta_{ik}$$

$$A_{ij} = e^{-d^2(\mathbf{x}_i, \mathbf{x}_j)/\sigma^2} \mathbf{1}_{\dim(\mathbf{x}_i) = \dim(\mathbf{x}_j)} e^{-(\theta_{ij} + \theta_{ji})/\eta} \gg A_{ik}$$

Theorem of GCT: assume the data points lie on two (geodesic) submanifolds of a general Riemannian manifold. With high probability and the proper choices of parameters specified in the paper, the constructed graph has two distinct major components and a few isolated nodes, where **each component** corresponds to **a cluster** of the original data points.

伺 と く き と く き と

Testing on synthetic dataset: Arc and spiral on \mathbb{S}^2

More tests on different manifolds can be found in the paper.

Experiment

Ballet dataset contains videos from a ballet instruction DVD.

Figure : Two samples of Ballet video sequences: The first and second rows comprise samples from the actions of hopping and leg-swinging, respectively.

向下 イヨト イヨ

For a video, we generate a sequence of subspaces as follows.

イロト イヨト イヨト イヨト

3

Experiment

For one dataset, we generate 3 clusters of subspaces from 3 random ballet videos. We do the experiment over 30 such datasets.

→ Ξ →

- ∢ ⊒ ⊳

Experiment

For one dataset, we generate 3 clusters of subspaces from 3 random ballet videos. We do the experiment over 30 such datasets.

- We analyzed possible ways to cluster manifold data (e.g., SCR, SMC, GCT).
- SCR works well in general, but is not able to resolve intersections.
- SMC formally generalizes the SSC algorithm, but there is no theoretical guarantee.
- GCT (proposed) is theoretical guaranteed under multi-manifold model and able to deal with intersections.

高 とう モン・ く ヨ と