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Motivation

Examples Non-Euclidean data representation

Image texture Symmetric positive definite matrix

Linear dynamic system Grassmannian (subspaces)

Shape of 2D (3D) object Shape space

· · · Stiefel, SE (3), Lie group etc.

I Goal: Cluster such data sets (especially when clusters lie on
low-dimensional submanifolds that may intersect)
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Clustering for Euclidean vectors

Figure : K-means Figure : Spectral clustering
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Spectral clustering

Spectral clustering contains two steps:

I weights Aij = e−d
2(xi ,xj )/σ

2

I d(xi , xj) can be any metric. This leads to a version of
spectral clustering with Riemannian metric (SCR)
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Hybrid linear modeling (subspace clustering)

I weights Aij = e−d
2(xi ,xj )/σ

2

I Methods (e.g., SCR) with
only distance information,
fail at the intersection!
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A clustering algorithm: Sparse subspace clustering

I For each point xi , solve the following sparse optimization

min
∑
j 6=i

|wij |+ λ‖xi −
∑
j 6=i

wijxj‖2 s.t.
∑
j 6=i

wij = 1

I The top nonzero coefficients come from points in the same
subspace

I Aij = |wij |+ |wji |
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Naive generalization: Sparse manifold clustering (SMC)

For each point xi , solve the following sparse optimization

min
∑
j 6=i

|wij |+ λ‖logxi xi −
∑
j 6=i

wij logxi xj‖
2

I Linearization: logarithm map logxi maps all points to the
tangent space Txi at xi

I Limitation: this linearization introduces a lot of error when xi
and xj are far away.

I No guarantee! The top nonzero coefficients may not come
from points in the same cluster.

back
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Manifold clustering algorithms

I SCR: Aij = e−d
2(xi ,xj )/σ

2
(trouble at the intersection!)

I SMC: Aij = |wij |+ |wji | (no guarantee for manifolds!)

I GCT (resolving intersection, theoretical guarantee)

I GCT stands for Geodesic Clustering with Tangents
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The local PCA algorithm

I Multi-manifold model

I Aij = e−d
2(xi ,xj )/σ

2
e−‖Ci−Cj‖2/η2

where Ci is the covariance
matrix computed from points in
a neighborhood of xi .

Xu Wang , Konstantinos Slavakis , Gilad Lerman Manifold clustering in non-Euclidean spaces



The local PCA algorithm

I Multi-manifold model

I Aij = e−d
2(xi ,xj )/σ

2
e−‖Ci−Cj‖2/η2

where Ci is the covariance
matrix computed from points in
a neighborhood of xi .

Xu Wang , Konstantinos Slavakis , Gilad Lerman Manifold clustering in non-Euclidean spaces



Generalization of local PCA to Riemannian spaces

How to generalize it to Riemannian manifolds?

Aij = e−d
2(xi ,xj )/σ

2
e‖Ci−Cj‖2/η2

I what is the covariance matrix of a set {x1, ..., xn} in
Riemannian spaces?

I Cxi : Covariance of the vectors logxi x1, ..., logxi xn in the
tangent space Txi

I How to compute the difference of Ci and Cj?
I (Caution!) Ci and Cj are quantities in different tangent spaces

Txi and Txj and their values depend on the particular
coordinate system chosen in each tangent space.
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Generalization of local PCA to Riemannian spaces

Problem: identify vectors at the north and south poles

I Implication: can’t compare
Ci and Cj in a consistent
way on S2!
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Generalization of local PCA to Riemannian spaces

Theorem (Hairy ball theorem)

There is no nonvanishing continuous tangent vector field on any
even-dimensional n-spheres, particularly, on S2.

Think about the hair whorl!

This is a special case of Poincaré-Hopf index theorem for general
manifolds in differential topology. There is no hope to find nonzero
vector fields on general manifolds, let alone consistent coordinate
systems.
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Generalization of local PCA to Riemannian spaces

How to generalize it to Riemannian manifolds?

Aij = e−d
2(xi ,xj )/σ

2
e‖Ci−Cj‖2/η2

Dead end?

Problem: Ci depends on coordinate systems, in other words, ”not
intrinsic”.
Solution: find coordinate-independent quantities! SMC
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Geodesic Clustering with Tangents (GCT)
Quantities independent of coordinate systems

I Find the local dimension of
the data by thresholding the
top eigenvalues of the
covariance matrix under any
coordinate system.

Aij = e−d
2(xi ,xj )/σ

2
1dim(xi )=dim(xj )

Caution!
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Geodesic Clustering with Tangents (GCT)
Quantities independent of coordinate systems

I Txi is the tangent space at
point xi

I Find the geodesic angle θij
of any two points xi and xj

I θij � θik

Aij = e−d
2(xi ,xj )/σ

2
1dim(xi )=dim(xj )e

−(θij+θji )/η � Aik
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Geodesic Clustering with Tangents (GCT)
Theoretical guarantee

Theorem of GCT: assume the data points lie on two (geodesic)
submanifolds of a general Riemannian manifold. With
high probability and the proper choices of parameters specified in
the paper, the constructed graph has two distinct major
components and a few isolated nodes, where each component
corresponds to a cluster of the original data points.
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Experiment

Testing on synthetic dataset: Arc and spiral on S2

More tests on different manifolds can be found in the paper.

Xu Wang , Konstantinos Slavakis , Gilad Lerman Manifold clustering in non-Euclidean spaces



Experiment

Ballet dataset contains videos from a ballet instruction DVD.

Figure : Two samples of Ballet video sequences: The first and second
rows comprise samples from the actions of hopping and leg-swinging,
respectively.
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Experiment

For a video, we generate a sequence of subspaces as follows.
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Experiment

For one dataset, we generate 3 clusters of subspaces from 3
random ballet videos. We do the experiment over 30 such datasets.
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Summary

I We analyzed possible ways to cluster manifold data (e.g.,
SCR, SMC, GCT).

I SCR works well in general, but is not able to resolve
intersections.

I SMC formally generalizes the SSC algorithm, but there is no
theoretical guarantee.

I GCT (proposed) is theoretical guaranteed under
multi-manifold model and able to deal with intersections.
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