Manifold Regression via Brownian Motion

Xu Wang and Gilad Lerman

Department of Mathematics University of Minnesota

August 19, 2015

- 4 回 2 - 4 □ 2 - 4 □

Given observations $\{(t_i, x_i)\}_{i=1}^n \in \mathbb{R} \times \mathbb{R}$, learn the function $f_0 : t \in \mathbb{R} \to x \in \mathbb{R}$. The Nadaraya-Watson estimator is

$$\begin{split} \hat{f}_{0}(t) &= \frac{\sum_{i=1}^{n} K_{h}(t-t_{i}) x_{i}}{\sum_{i=1}^{n} K_{h}(t-t_{i})} \\ &= \frac{\sum_{i=1}^{n} K_{h}(t-t_{i}) f_{0}(t_{i})}{\sum_{i=1}^{n} K_{h}(t-t_{i})} + \frac{\sum_{i=1}^{n} K_{h}(t-t_{i}) (x_{i}-f_{0}(t_{i}))}{\sum_{i=1}^{n} K_{h}(t-t_{i})} \\ &\approx (I-h\Delta_{p^{2}(t)}) f_{0} + (error) \\ &= f_{0}(t) \end{split}$$

when K_h is the Gaussian kernel.

Problem: One can not add x_i if they lie on a general manifold.

・ 同 ト ・ ヨ ト ・ ヨ ト

Bayes theorem:

$$\mathbb{P}(\mathit{func}|\mathit{data}) = rac{\mathbb{P}(\mathit{data}|\mathit{func}) \cdot \mathbb{P}(\mathit{func})}{\mathbb{P}(\mathit{data})}$$

Terminology: Prior distribution : $\mathbb{P}(func)$ Posterior distribution : $\mathbb{P}(func|data)$ MAP estimator: $\hat{f} = \operatorname{argmax}_{f \in C([0,1],M)} \mathbb{P}(f|\{(t_i, x_i)\}_{i=1}^n)$

Question: Consistency of this estimator requires the convergence of \hat{f} to f_0 .

ヨット イヨット イヨッ

Given a compact manifold M (e.g., \mathbb{S}^D , SO(3), space of shapes) and observations $\{(t_i, x_i)\}_{i=1}^n \in [0, 1] \times M$, learn the function $f_0: [0, 1] \to M$. $x|t \sim p_{\sigma^2}(f_0(t), x).$

Here $p_{\sigma^2}(f_0(t), x)$ denotes the heat kernel on M, determining how x_i deviates from $f_0(t_i)$

When $M = \mathbb{R}^D$:

$$p_{\sigma^2}(f_0(t), \mathbf{x}) = \frac{1}{(\sqrt{2\pi}\sigma)^D} \exp\left(\frac{-\|\mathbf{x} - f_0(t)\|^2}{2\sigma^2}\right),$$

伺い イヨト イヨト

Bayesian framework Prior distribution (discrete BM)

The prior distribution $\Pi_{c,h}$ with density:

$$\pi_{c,h}(f) = \frac{1}{\mu(M)} \prod_{k=1}^{1/h} p_{ch}(f(kh-h), f(kh)).$$

Bayesian framework Prior distribution (discrete BM)

Let $c = 1, h = 0.5, f \in PGF(h) \subset C([0, 1], \mathbb{S}^1)$ is determined by 3 values $f(0), f(0.5), f(1) \in \mathbb{S}^1 \equiv [0, 2\pi]/\{0, 2\pi\}$.

-	f(0)	f(0.5)	f(1)	$\pi_{c,h}(f)$
f_1	0	0	0	0.051
f_2	0	0.5	0	0.031
f ₃	0	1	0	0.007

The continuous BM prior on $\mathcal{P} \equiv C([0, 1], M)$ is the limit of the discrete BM prior. It is the unique probability measure Π such that for any $n \in \mathbb{N}$, $0 = t_0 < ... < t_n = 1$, and open subsets $U_0, U_1, \ldots, U_n \in M$, the following identify is satisfied

$$\Pi(f \in \mathcal{P} \mid f(t_0) \in U_0, \dots, f(t_n) \in U_n) = \int_{U_0} \frac{d\mu(x_0)}{\mu(M)} \int_{U_1 \times \dots \times U_n} \prod_{i=1}^n p_{c(t_i - t_{i-1})}(x_i, x_{i-1}) d\mu(x_i).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Given observations $\{(t_i, x_i)\}_{i=1}^n$ i.i.d drawn from

$$x|t \sim p_{\sigma^2}(f_0(t), x), t \sim p(t)$$

the posterior distribution of Π has the density function

$$egin{aligned} \Pi(f \in A | \{(t_i, x_i)\}_{i=1}^n) \propto \int_{f \in A} \prod_{i=1}^n p(t_i, x_i | f) d \Pi(f) \ &= \int_{f \in A} \prod_{i=1}^n p_{\sigma^2}(f(t_i), x_i) p(t_i) d \Pi(f). \end{aligned}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Bayesian framework Posterior distribution

If $\sigma^2=$ 0.3 and we observe $(0.5,0.6)\in [0,1]\in \mathbb{S}^1$, then

	f(0)	f(0.5)	f(1)	$\pi_{c,h}(f)$	$\pi_{c,h}(f f(0.5) = 0.6)$
f_1	0	0	0	0.051	0.020
f_2	0	0.5	0	0.031	0.022
f ₃	0	1	0	0.007	0.004

• 3 >

A ■

문 🛌 문

Algorithm 1 Bayesian Manifold regression via discrete BM

- **Input:** Observations $\{(t_i, x_i)\}_{i=1}^n \subset [0, 1] \times M$, grid spacing h (m = 1/h + 1), scaling constant c, variance σ^2 , temperature T for Simulated Annealing (SA).
- **Output:** A function in PGF(h) determined by $\{(t_j^*, x_j^*)\}_{j=1}^m$. **Steps**:
 - $t_j^* = (j-1)h$, $x_j^{(0)}$ i.i.d. uniformly sampled from M and $f^{(0)} \in PGF(h)$ determined by $\{(t_j^*, x_j^{(0)})\}_{j=1}^m$ • Energy function $E(f) = \pi_{c,h}(f) \prod_{i=1}^n p_{\sigma^2}(f(t_i), y_i)p(t_i)$
 - $f^* = SA(E, f^{(0)}, T)$ return The function f^* in PGF(h) determined by $\{(t^*_i, x^*_i)\}_{i=1}^m$.

(ロ) (同) (E) (E) (E)

Algorithm 2 Bayesian Manifold regression via continuous BM

Input: Observations $\{(t_i, x_i)\}_{i=1}^n \subset [0, 1] \times M$, $\{t_j^*\}_{j=1}^m$, scaling constant *c*, variance σ^2 , temperature *T* for Simulated Annealing (SA).

Output: Predictions $\{(t_j^*, x_j^*)\}_{j=1}^m$. **Steps**:

- Let $\{t'_j\}_{i=1}^{n+m}$ be sorted array of $\{t_i\}_{i=1}^n \cup \{t^*_j\}_{j=1}^m$, $x_j^{(0)}$ i.i.d. uniformly sampled from M and $f^{(0)}$ such that $f^{(0)}(t'_i) = x_i^{(0)}$
- $\tilde{\pi}_c(f) = \prod_{i=1}^{n+m} p_{c(t'_i t'_{i-1})}(f(t'_i), f(t'_{i-1}))$
- Energy function $E(f) = \tilde{\pi}_c(f) \prod_{i=1}^n p_{\sigma^2}(f(t_i), y_i) p(t_i)$
- $f^* = SA(E, f^{(0)}, T)$

return $\{(t_j^*, x_j^*)\}_{j=1}^m$.

소리가 소문가 소문가 소문가

The topologies

The metric topology is defined by

$$d_q(f_1, f_2) = \left(\int_{t \in [0,1]} \operatorname{dist}_M(f_1(t), f_2(t))^q p(t) dt\right)^{1/q}$$

The weak topology

$$N_{\epsilon}(f_{0}) = \left\{ f \in \mathcal{P} : \left| \int_{[0,1] \times M} p_{g} p_{f} dt d\mu(x) - \int_{[0,1] \times M} p_{g} p_{f_{0}} dt d\mu(x) \right| \le \epsilon, \forall g \in \mathcal{P} \right\}$$

Here $p_{f} = p_{\sigma^{2}}(f(t), x) p(t).$

回下 ・ヨト ・ヨト

Theorem

If *M* is a compact Riemannian manifold and if the true underlying function $f_0 \in \mathcal{P}$ of the regression model is Lipschitz continuous, then the posterior distribution $\Pi(\cdot|\{(t_i, x_i)\}_{i=1}^n)$ is weakly consistent. In other words, for any $\epsilon > 0$,

$$\Pi(N_{\epsilon}(f_0)|\{(t_i,x_i)\}_{i=1}^n)\longrightarrow 1$$

almost surely w.r.t. the true probability measure P_0^n as $n \to \infty$.

向下 イヨト イヨト

Theorem

Assume p(t) is strictly positive on [0,1], the true function $f_0 \in \mathcal{P}$ is Lipschitz Assume an arbitrarily fixed $0 < \epsilon < 1/4$ and for $n \in \mathbb{N}$, let $b_n = n^{-1/2+2\epsilon}$ be the sidelength of the set $PGF(b_n)$ and let $\{\Pi_n\}_{n\in\mathbb{N}}$ denote the sequence of discretized BM priors on $PGF(b_n)$. Then there exists an absolute constant A_0 and a fixed constant C_0 depending only on the positive minimum value of p(t)on [0,1], the volume of M and the Riemannian metric of M such that $\Pi_n(\cdot|\{(t_i, x_i)\}_{i=1}^n)$ contracts to f_0 according to the rate $\epsilon_n = \sqrt{b_n/C_0} = O(n^{-1/4+\epsilon})$. More precisely,

$$\prod_n (f : d_q(f, f_0) \ge A_0 \epsilon_n | \{ (t_i, x_i) \}_{i=1}^n \} \to 0$$

in P_0^n -probability as $n \to \infty$.

▲圖▶ ★ 国▶ ★ 国▶

Experiment

Comparison with kernel regression

< ∃→

Experiment The hyperparameter *c*

Э

Э

Xu Wang and Gilad Lerman Manifold Regression via Brownian Motion

Experiment The hyperparameter *c*

э

æ

Xu Wang and Gilad Lerman Manifold Regression via Brownian Motion

Experiment The sidelength parameter *h*

Figure : L_1 error of DBM for different sidelength h_1

Xu Wang and Gilad Lerman Manifold Regression via Brownian Motion

Thank You !

((日)) (日) (日)