PCA with Outliers and Missing Data

Sujay Sanghavi

Electrical and Computer Engg.
University of Texas, Austin

Joint w/ C. Caramanis, Y. Chen, H. Xu
Outline

PCA and Outliers
- Why SVD fails
- Corrupted features vs. corrupted points

Our idea + Algorithms

Results
- Full observation
- Missing Data

Framework for Robustness in High Dimensions
Given points that lie on/near a Lower dimensional subspace, find this subspace.

Classical technique:
1. Organize points as matrix
2. Take SVD
3. Top singular vectors span space
Fragility

Gross errors of even one/few points can completely throw off PCA

Reason: Classical PCA minimizes ℓ_2 error, which is susceptible to gross outliers
Two types of gross errors

- Individual entries corrupted
- Entire columns corrupted

.. and **missing data** versions of both
PCA with Outliers

Objective: find identities of outliers
(and hence col. space of true matrix)
Outlier Pursuit - Idea

Standard PCA

\[
\min_L \| M - L \|_F \\
\text{s.t. } \text{rank}(L) = r
\]

Outlier Pursuit

\[
\min_{L,C} \| M - L - C \|_F \\
\text{s.t. } \text{rank}(L) = r \\
\text{col}(C) = c
\]
Outlier Pursuit - Method

We propose:

$$\min_{L,C} \| M - L - C \|_F + \lambda_1 \| L \|_* + \lambda_2 \| C \|_{1,2}$$

Convex surrogate for
Rank constraint

Convex surrogate for
Column-sparsity
When does it (not) work?

When certain directions of column space of L^* poorly represented.

This vector has large inner product with some coordinate axes.

\[L^* = U \Sigma V' \]

\[\max_i \|V'e_i\| \] is large.
Results

Assumption: Columns of true L^* are incoherent:

$$\max_i \|V'e_i\|^2 \leq \frac{\mu r}{n}$$

Note: $r \leq \mu r \leq n$

First consider: Noisless case

$$\min_{L,C} \|L\|_* + \lambda\|C\|_{1,2}$$

s.t. $L + C = M$
Results

Assumption:
Columns of true L^* are incoherent:

$$\max_i \|V'e_i\|^2 \leq \frac{\mu r}{n}$$

Note: $r \leq \mu r \leq n$

Theorem: (noiseless case)

Our convex program can identify upto a fraction γ of outliers as long as

$$\frac{\gamma}{1 - \gamma} \leq \frac{c}{\mu r}$$

$$\lambda = \frac{3}{7\sqrt{\gamma n}}$$

Outer bound: $\gamma > \frac{1}{r + 1}$ makes the problem un-identifiable
A point x is the optimum of a convex function f.

Zero lies in the (sub) gradient $\partial f(x)$ of f at x.

Steps:
1. guess a “nice” point, -- oracle problem
2. show it is the optimum by showing zero is in subgradient

Proof Technique
Proof Technique

Guessing a “nice” optimum

(Note: in “single structure” problems like matrix completion, compressed sensing etc., this is not an issue)

Oracle Problem:

\[\min_{L,C} \| M - L - C \|_F + \lambda_1 \| L \|_* + \lambda_2 \| C \|_{1,2} \]

s.t. \(ColSupp(C) \subset ColSupp(C^*) \)

\(ColSpace(L) \subset ColSpace(L^*) \)

\((\hat{L}, \hat{C})\) is, by definition, a nice point.

Rest of proof: showing it is the optimum of original program, under our assumption.
Performance

L + C formulation

L + S formulation
(from Chandrasekaran et. al.,
[Candes, et. al.])
Another view…

Mean is solution of

\[
\min_x \sum_i (x_i - x)^2
\]

Fragile: Can be easily skewed by one / few points

Median is solution of

\[
\min_x \sum_i |x_i - x|
\]

Robust: Skewing requires error in constant fraction of pts

Standard PCA of M is solution of

\[
\sum_j \|M_j - L_j\|^2
\]

\[
\text{rank}(L) \leq r
\]

Our method is (convex rel. of)

\[
\sum_j \|M_j - L_j\|
\]

\[
\text{rank}(L) \leq r
\]
Collaborative Filtering w/ Adversaries
Collaborative Filtering w/ Adversaries

- Low-rank matrix that
 - Is partially observed
 - Has some corrupted columns
 == outliers with missing data!

Our setting:
- Good users == random sampling of incoherent matrix (as in matrix completion)
- Manipulators == completely arbitrary sampling, values
Outlier Pursuit with Missing Data

\[
\begin{array}{l}
\text{min} & \|L\|_* + \gamma\|C\|_{1,2} \\
\text{s.t.} & l_{ij} + c_{ij} = m_{ij} \quad \text{for observed} \quad (i, j)
\end{array}
\]

Now: need **row space to be incoherent** as well

- since we are doing matrix completion and manipulator identification
Our Result

Theorem:

Convex program optimum \((\hat{L}, \hat{C})\) is such that \(\hat{L}\) has the correct column space and the support of \(\hat{C}\) is exactly the set of manipulators, whp, provided \(n \geq p\).

Sampling density

\[
\rho \geq c_1 \frac{\mu^2 r^2 \log^3 (4n)}{p}
\]

Fraction of users that are manipulators

\[
\frac{\eta}{1 - \eta} \leq c_2 \frac{\rho^2}{(1 + \frac{\mu r}{\rho \sqrt{p}}) \mu^2 r^2 \log^6 (4n)}
\]

Note: no assumptions on manipulators
Robust Collaborative Filtering

Algo: Partially observed
Low-rank + Column-sparse

Algo: Partially observed
Sparse + Low-rank
More generally …

Several methods in High-dim. Statistics

\[
\min_X \mathcal{L}(y, A; X) + \lambda r(X)
\]

Loss function

\[
\lambda_1 r_1(X_1) + \lambda_2 r_2(X_2)
\]

Regularizer

Our approach:

\[
\min_{X_1, X_2} \mathcal{L}(y, A; X_1 + X_2) + \lambda_1 r_1(X_1) + \lambda_2 r_2(X_2)
\]

(same) Loss function

Weighted sum of regularizers

Yields robustness + flexibility in several settings.

Today: PCA wit Outliers + missing data
Latent factors in time series (ICML’12)

Matrix completion from Errors and Erasures (ISIT 2011, SIAM J. Optim. 2011)

Graph clustering (ICML 2011)

Robust Recommender Systems (ICML 2011)

Multiple Sparse Regression (NIPS 2010)

PCA that is robust to Outliers (NIPS 2010, Trans IT)

All papers on my website, Arxiv.