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Robust Locally Linear Analysis with Applications to
Image Denoising and Blind Inpainting∗
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Abstract. We study the related problems of denoising images corrupted by impulsive noise and blind inpainting
(i.e., inpainting when the deteriorated region is unknown). Our basic approach is to model the set
of patches of pixels in an image as a union of low-dimensional subspaces, corrupted by sparse but
perhaps large magnitude noise. For this purpose, we develop a robust and iterative method for
single subspace modeling and extend it to an iterative algorithm for modeling multiple subspaces.
We prove convergence for both algorithms and carefully compare our methods with other recent
ideas for such robust modeling. We demonstrate state-of-the-art performance of our method for
both imaging problems.
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1. Introduction. We consider the problem of denoising images corrupted with impulsive
noise, and the problem of blind inpainting where the images have been “scratched.” In both
of these settings, some percentage of the pixels of the image have been grossly corrupted,
and the locations and the values of the corrupted pixels are unknown. In the former, it is
assumed that the corruptions are unstructured, whereas the latter has geometrically structured
corruptions (e.g., lying along curves). We take advantage of some recent progress in sparse
coding, dictionary design, and geometric data modeling in order to develop a method with
state-of-the-art performance on these two problems.

Sparse coding and dictionary design have been shown to be effective at denoising images
corrupted with Gaussian noise as well as at standard inpainting with corruptions in known
locations [13]. The basic approach is to fix a width

√
m, and extract all the

√
m×√

m patches
from the image, forming an m × n matrix X, where n is the number of patches. Then X is
decomposed into

DA � X,

where D is an m × k dictionary matrix and A is the matrix of coefficients; A is either
constrained to be sparse or encouraged to be sparse via a regularization term. One can learn
both A and D and create a model for X that can be used for both denoising and inpainting.
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Yu, Sapiro, and Mallat [46] suggested a structured sparsity constraint. That is, they re-
quireA to have a block structure with a prespecified number of blocks; each block corresponds
to a fixed set of columns of D. They learn this structure by partitioning X into clusters asso-
ciated to subdictionaries of D via a variant of the K-subspaces algorithm [18, 5, 39, 15]. Given
parameters q and K, this algorithm attempts to find K q-dimensional subspaces, represented
by m × q (where q < m) orthogonal matrices D1, . . . ,DK (i.e., matrices with orthonormal
columns), which minimize

(1.1)

N∑

j=1

min
1≤i≤K

‖xj −DiD
T
i xj‖2.

Finding D = [D1, . . . ,DK ] can be thought of as a block structured dictionary learning prob-
lem, or as finding the best secant subspaces to the given data set. The block structure benefits
the denoising by making the coding more stable [46].

The optimization for the K-subspaces model can be done via Lloyd iteration: holding the
clusters fixed, find the best D and then update the clusters. With the clustering fixed, the
problem reduces to finding the best rank q approximation to the columns in X associated
to the cluster. In the case of Gaussian noise, “best” is usually chosen to be measured by
Frobenius norm, in which case the solution is given via SVD.

In this paper we adapt the approach of [46] to images corrupted by impulsive noise (and
perhaps with additional Gaussian noise) as well as to blind inpainting. In this framework,
finding D = [D1, . . . ,DK ] with the clusters fixed requires a tool different from the SVD. In
particular, we will need a “robust” low rank method, which allows large corruptions of a
controlled percentage of the corresponding matrix, in order to obtain a robust sparse coding
method. Recently, there has been much interest in developing robust low rank models for
matrices corrupted this way [9, 8, 34]. Our goal is to locally use such a low rank model in a
framework such as K-subspaces for image denoising and blind inpainting. However, we will
find that these recent methods of low rank modeling are not well suited to this task, and we
will use instead a greedy and fast method for the updates of the dictionary D.

The major contributions of this paper are as follows:
1. We describe an alternating least squares (ALS) algorithm for robust recovery of low

rank matrices and compare it to other low rank modeling algorithms (for the same corruption
model).

2. We introduce local versions of the ALS (and other low rank modeling algorithms) for
block structured dictionary learning (or, equivalently, locally linear modeling) in the presence
of large and sparse corruptions.

3. We prove that under some mild conditions the ALS algorithm and its local version
converge to a fixed point with probability 1.

4. We show how the local methods can be used for image denoising with impulsive noise
and blind inpainting. In addition to five common images, we use a database of 100 images to
demonstrate the state-of-the-art performance by our method.

2. Robust PCA algorithms. We discuss here algorithms for robust principal component
analysis (robust PCA or RPCA) for recovering a given m × n matrix X when a percentage
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of the entries have been corrupted by noise. We also suggest a new algorithm based on the
well-known framework of ALS (which was previously used for PCA with missing components).

It is clear that, in general, this is an impossible problem: without some prior knowledge
about the matrix, any value at any entry is as legitimate as any other value. However, it often
happens in applications that X can be modeled as X = L + S, where L is (approximately)
low rank and S is sparse.

2.1. Review of some recent RPCA algorithms. While RPCA in its broadest sense has a
long history [17, 26], its intensive study with sparse corruption (as formulated above) started
only recently with two parallel groundbreaking works by Candès et al. [8] and Chandrasekaran
et al. [9]. Both proposed the following convex minimization for RPCA:

(2.1) min
L∈Rm×n

‖L‖∗ + λ‖X− L‖1,

where ||X − L||1 :=
∑

i,j |Xij − Lij|, ||L||∗ is the sum of the singular values of L (i.e., its
nuclear norm), and λ is a fixed parameter. This minimization for RPCA is referred to by [8]
as principal component pursuit (PCP).

Candès et al. [8] proved that if λ = 1/
√
n and the data matrix can be represented as

X = L0 + S0, where L0 is low rank and “strongly incoherent” (as specified in [8, eqs. (1.2)–
(1.3)]) and S0 is sparse enough with uniformly sampled nonzero elements, then the minimizer
of (2.1) is L0 with overwhelming probability (of the uniform sampling). On the other hand,
Chandrasekaran et al. [9] provided a condition for deterministic exact recovery for various
distributions of corrupted elements, though it implied a stronger restriction on the fraction of
corruption (see also [16] for weaker restrictions than those in [9]); clearly [9] could not fix λ
for its more general setting.

Lin et al. [23] have implemented (2.1) via an augmented Lagrangian approach, which
alternates between shrinkages of spaces and singular values. This procedure can be made very
efficient when one has a good guess at an upper bound for the rank of the minimizer, which
we refer to as PCP(capped) and implement in the supplemental material (a similar idea of
capping appeared in [43] after the submission of this paper).

The PCP algorithm is designed only to deal with sparse errors and may not be stable to
noise in all entries. For this purpose, Zhou et al. [49] proposed a stable PCP, which minimizes

(2.2) min
L,S∈Rm×n

‖L‖∗ + λ‖S‖1 + ν

2
‖X− L− S‖2F .

A formally equivalent problem is

(2.3) min
L,S∈Rm×n

‖L‖∗ + λ‖S‖1 such that ‖X− L− S‖F ≤ ε.

They proved a perturbation-type result for the stability of the solution of (2.3), assuming
the common condition for robustness of the solution of (2.1) and small values of noise ε
(equivalently, large sizes of ν in (2.2); however, there is no simple expression for the lower
bound on ν in terms of the upper bound of ε). Other types of stability results appeared in [1]
and [16]. However, in our setting of large noise (often larger than the signal when measured in
the Frobenius norm), such perturbation results may not be practical. Various methods have
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recently been proposed for solving this kind of optimization (see e.g., [35]), though we are not
aware of any online code for this.

Another approach for RPCA, low-rank matrix fitting (LMaFit) [34], uses only the last
two terms of (2.2). That is, it minimizes the objective function

(2.4) min
B,C,S

‖S+BC−X‖2F + μ‖S‖1,

where S ∈ R
m×n, B ∈ R

m×d, and C ∈ R
d×n. The LMaFit introduces narrow matrices B and

C to control the rank of the approximation and allows distortion by adding the Frobenius
norm term to the objective function. Similarly to stablePCP, the LMaFit model is expected
to handle Gaussian noise well.

2.2. RPCA via an ALS algorithm. The simplest interpretation of the decomposition of
X into sparse S and low rank L is to fix the number of nonzero elements N0 in S (or its
percentage p, so that N0 = �p · m · n�) and to fix a rank d for L. In this situation, we
might measure errors with some matrix norm. If we choose the Frobenius norm, following the
notation above, we may get the problem

(2.5) min
B,C,S

‖S+BC−X‖2F such that ‖S‖0 ≤ N0.

Clearly, the LMAFit minimization of (2.4) is a relaxation of this problem.
We suggest a variant for the minimization of (2.5). We represent the set of corrupted

indices by a matrix W ∈ {0, 1}m×n with N0 zeros (for indices of corrupted points) and
m·n−N0 ones. We denote the Hadamard product by ◦, i.e., (A◦B)ij = AijBij. Then, instead
of minimizing (2.5), we may minimize the objective function J(B,C,W) = ‖(BC−X)◦W‖2F .

In order to obtain a well-conditioned optimization problem and thus stable solutions, we
modify J by adding some regularization terms (depending on sufficiently small λ1 > 0, λ2 > 0,
λ3 > 0, and U ∈ R

m×n, whose elements are i.i.d. samples from a continuous distribution on
[0, 1]) as follows:

(2.6) J(B,C,W) = ‖(BC−X) ◦W‖2F + λ1‖B‖2F + λ2‖C‖2F + λ3‖U ◦W‖2F .

The low rank approximation is L = BC, and the sparse matrix is S = X − L (which is
supported on the zeros of W). This formulation suggests a simple algorithm, which we
describe in Algorithm 1 and will henceforth refer to as ALS. It will be easier for us to explain
the role of the various regularizations in (2.6) after clarifying this algorithm.

The idea of this algorithm is to iteratively minimize (2.6) alternating between minimization
over B and C as well as estimating W. The code has n2 loops for re-evaluating W and n1

loops for minimizing over C and B.
We note that the first two regularization terms for J (that is, λ1‖B‖2F and λ2‖C‖2F )

ensure that the minimizers B and C (estimated throughout the iterates of Algorithm 1)
are unique and stable. Formulas for these minimizers are provided later in (G.4) and (G.5)
(when proving convergence of Algorithm 1). It is clear from these formulas that such reg-
ularization is also useful in improving the numerical stability of these solutions. The regu-
larization parameter λ3 ensures that the set of indices of the �p · m · n� greatest elements
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Algorithm 1. An ALS algorithm of recovering a low rank matrix from corrupted data.

Input: X ∈ R
m×n; d: low rank; p: the percentage of corrupted entries; n1, n2: numbers of

iterations; λ1, λ2, λ3 ≥ 0: regularization parameters.
Output: B ∈ R

m×d, C ∈ R
d×n, W ∈ {0, 1}m×n with exactly �p ·m · n� zeros.

Initialization: W = 1; B ∈ R
m×d with i.i.d. entries: Bij ∼ N (0, 1); U ∈ R

m×n with
i.i.d. entries: Uij ∼ Uniform(0, 1).
for l = 1 : n2 do
for t = 1 : n1 do

C = argmin
C

J (J is defined in (2.6)).

B = argmin
B

J .

end for
W is 0 at the indices of the �p ·m · n� greatest elements of
{|Xij − (BC)ij |2 + λ3U

2
ij}mi=1

n

j=1
, and 1 otherwise.

end for

of {|Xij − (BC)ij |2 + λ3U
2
ij}mi=1

n

j=1
(computed in Algorithm 1) is uniquely determined. We

later use this property for proving convergence of Algorithm 1 (see e.g., (G.2)). However, in
practice, we have found no difference when setting λ3 = 0 and arbitrarily choosing any set of
�p · m · n� greatest elements of {|Xij − (BC)ij |2}. We demonstrate later in Tables 3 and 4
the advantage of the overall regularization. We also demonstrate later in Figures 10 and 11
the stability of the algorithm (in terms of both speed and accuracy) with respect to (w.r.t.) a
large logarithmic range of small values of the regularization parameters. We comment though
that in all of these experiments we could have set λ3 = 0 without changing the results (which
is not true for λ1 and λ2). Nevertheless, we will use λ3 > 0 in our implementation in order to
demonstrate in practice the algorithm suggested by our theory.

Throughout all the experiments we fix the parameters of Algorithm 1 as λ1 = λ2 = λ3 =
10−10 and form U by drawing i.i.d. samples from a uniform distribution on [0, 1]. We also fix
n1 = 1. For the simulated data in Appendix A, n2 is chosen such that either the algorithm
converges or n2 obtains a sufficiently large value. More precisely, the outer loop stops if one
of the following criteria is achieved: (1) n2 = 100; (2) the relative change of J is less than
10−3; (3) the absolute change of J is less than 10−4. We note that the other parameters, p
and d, have a clear interpretation in terms of the data and one may expect a bound on them
for various data sets. More specifically, the results of ALS are robust to overestimation of p
and d but not robust to underestimation (see Appendix B). In Appendix C, we propose and
test an estimation strategy for d. We demonstrate results on artificial data in Appendix A,
while in the main text we focus on the application of ALS within a hybrid linear modeling
approach to both impulsive denoising and blind painting.

ALS algorithms for PCA have a long history and have been widely used for matrix com-
pletion, i.e., when the locations of the corrupted elements are specified, see, for example,
[44, 37, 40, 7, 31, 29, 48]. In fact, the ALS algorithm for matrix completion is practically
obtained by fixing the matrix W according to known and missing locations (1’s and 0’s of
this matrix) and performing a restricted version of the ALS algorithm of this paper.
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2.3. Why a new RPCA algorithm? The reader may wonder why we use an ALS method
rather than the convex method of [9, 8] or its stable version [49], which have theoretical guar-
antees. We will use RPCA in a K-subspaces framework for modeling the underlying data by
multiple subspaces. One cannot expect a fully convex formulation for such a setting. Indeed,
Lerman and Zhang [21, section 5.1] have shown that it is impossible to generalize convex
strategies as in [9, 8] for recovering multiple subspaces by energy minimization. Moreover,
strategies such as [25, 24], which generalize [9, 8] to obtain an affinity matrix via a convex
procedure (and then apply the nonconvex spectral clustering), are extremely slow for our
application (see section 5).

We were also unable to successfully apply [9, 8] (or its stable version) within a K-subspaces
algorithm because it is not obvious how to extend the nuclear norm out-of-sample (see section
3.2). In particular, we find it difficult to prove weak convergence theorems for the naive
K-subspaces versions of PCP, unlike ALS (see section 4.4), due to the lack of monotonicity.
While [34] naturally generalizes to a K-subspace algorithm, our experimental results using
the authors’ code in the setting of image denoising have not been successful.

Finally, and in some sense, most importantly, in our image denoising application, we have
a good initialization. One of the complaints with nonconvex methods such as ALS or K-
subspaces is the dependence on the initialization for good performance. But the initialization
of the dictionary as in [46] has shown to be effective for image denoising. Here we follow this
initialization for both denoising and blind inpainting (see section 5.2). Because we have such
a good idea of where to start, dependence on initialization is actually a feature and not a bug.
For example, this initialization (when compared to a random one) gains an improvement up
to 4dB for denoising and up to 9dB for blind inpainting when using the images in Tables 1
and 2.

3. Piecewise linear models. We introduce local versions of the ALS (and other low rank
modeling algorithms) for block structured dictionary learning. Alternatively, we introduce
local linear modeling of data with low-dimensional structure in the presence of large and
sparse corruption. Our elementwise matrix corruption model completely distorts the nearest
neighbors’ distances between the uncorrupted data points (stored as matrix columns). There-
fore, standard methods for manifold learning [36, 32, 20] will completely fail on such corrupted
data. We thus model the data by several multiple subspaces via a K-subspaces strategy, which
replaces the least squares best fit subspaces by different robust low rank best fit subspaces.

3.1. The K-ALS algorithm. The K-ALS algorithm aims to minimize the following reg-
ularized objective function:

J({Bk}Kk=1, {Ck}Kk=1, {Wk}Kk=1, η)(3.1)

=

K∑

k=1

(‖(BkCk −Xk) ◦Wk‖2F + λ1‖Bk‖2F + λ2‖Ck‖2F + λ3‖Uk ◦Wk‖2F ) + λ4

n∑

j=1

v2η(j),

where η maps the indices of data points (1, . . . , n) to indices of subspaces (1, . . . ,K), Xk ∈
R
m×nk is a submatrix of X representing the nk data points in cluster η(j) = k, Wk ∈

{0, 1}m×nk , Uk ∈ R
m×nk , and both {Uk}Kk=1 and (v1, . . . , vK) are initialized by i.i.d. samples

from a continuous distribution on [0, 1].
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In practice, K-ALS uses Lloyd’s algorithm as follows. The input parameters of K-ALS
are the number of subspaces K, a rank d (though mixed ranks for the different subspaces are
also possible), a percentage of corrupted entries p, regularization parameters λ1, . . . , λ4 (which
we clarify at the end of this section), {Uk}Kk=1, (v1, . . . , vK), and number of iterations n1, n2,
and n3. The algorithm first initializes a list of subspaces (details of the initialization for the
imaging problems of this paper are discussed in section 5) and the matrix W (with indices 0
for estimated corrupted coordinates and 1 for uncorrupted). The algorithm then iteratively
repeats the following two steps n3 times. The first step finds the nearest subspace to each
data point, ignoring the entries currently suspected to be corrupted. That is, given a data
point x ∈ R

m (i.e., column of the matrix X), let x denote the suspected uncorrupted entries
in x. Furthermore, for each 1 ≤ i ≤ K and each such x (obtained from a column of X), let
Bi ≡ Bi(x) be the dim(x) × d matrix formed by the rows of Bi corresponding to the same
uncorrupted indices of x. Using this notation, x is nearest to the subspace indexed by

(3.2) j = argmin
1≤i≤K

min
c∈Rd

(‖Bic− x‖22 + λ4v
2
i

)
.

The second step computes a new basis for each cluster of points assigned to a given subspace
of the first step by the ALS procedure of section 2.

The regularization parameters λ1, λ2, and λ3 are used for the ALS algorithm within each
cluster, and their role has already been discussed in section 2.2. The parameter λ4 ensures
that the cluster memberships (which are determined by (3.2)) are uniquely assigned; this
is clarified later in (G.7) and (G.8) when proving convergence of the K-ALS algorithm. In
practice, we have found the regularization term λ4

∑n
j=1 v

2
η(j) unnecessary, though we keep it

here so that our experiments correspond to the later theoretical analysis. Throughout all the
experiments, λ1 = λ2 = λ3 = λ4 = 10−10, though the results are hardly different when setting
λ3 = λ4 = 0.

Our implementation of the K-ALS algorithm (as well as the ALS algorithm) is available
at http://math.umn.edu/∼lerman/kals.

3.2. Other possibilities of K-RPCA algorithms. The generalization of the PCP model
(‖ · ‖∗ + λ · ‖ · ‖1) to the setting of K-subspaces is less straightforward. Indeed, the inclusion
of new data points (i.e., the first step above) affects the nuclear norm of the whole data set
and may require changing the representations of other points. Nevertheless, to run the local
version of the algorithm, if x ∈ R

m is a data point and B1, . . . ,BK are the orthonormal bases
of the d-dimensional subspaces representing the clusters, then we associate to x the subspace
Bj, where

(3.3) j = argmin
1≤i≤K

min
c∈Rd

‖x−Bic‖1.

On the other hand, the LMaFit model extends to a K-LMaFit model without complica-
tions. If x ∈ R

m is a data point andB1, . . . ,BK are the orthonormal bases of the d-dimensional
subspaces representing the clusters, then we associate to x the subspace Bj , where

(3.4) j = argmin
1≤i≤K

min
c∈Rd,e∈Rm

(‖e+Bic− x‖2F + μ‖e‖1
)
.

http://math.umn.edu/~lerman/kals
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3.3. Some implementation details. All the piecewise linear models discussed above have
hard decision boundaries for cluster membership; therefore, points near the boundary may
not be well represented. One simple remedy to this kind of problem is to repeat the clustering
several times and generate multiple reconstructions via overlapping clusterings. In the wavelet
literature, this technique is called cycle spinning [10]; in this context, it is simply the idea
that the charts of a manifold (which may be part of a union of manifolds) should overlap. If
the final goal is denoising, then we average the outputs of all repetitions.

For the image data in section 5 we set n2 from Algorithm 1 to be 1 and consequently
speed up the algorithm.

In the K-PCP model, when computing the nearest low rank model for a data point, we
need to cap the rank allowed for each of the models; else the model with the highest rank will
become the representative for every point.

4. Mathematical analysis of convergence. We establish theoretical analysis for the (reg-
ularized) ALS and K-ALS algorithms.

4.1. Preliminaries. We associate to both the ALS algorithm and the K-ALS algorithm
mappings from their inputs to their possible outputs. For the ALS algorithm each iter-
ation at time t computes the values of a point (Bt,Ct,Wt). A domain for this point is
X = R

m×d × R
d×n × {0, 1}m×n. For the K-ALS algorithm we denote for simplicity a point

({Bk}Kk=1, {Ck}Kk=1, {Wk}Kk=1, η) by Ω. We also denote this point at iteration t by Ωt. The
domain X for points Ω is X = (Rm×d)K×(Rd×n)K×({0, 1}m×n)K×{1, . . . ,K}n. We describe
each algorithm as a mapping φ from X to the partition set of X , P(X ) (including several pos-
sible results as we have no a priori knowledge of convergence). A fixed point of φ is a point
x ∈ X for which {x} = φ(x). We express convergence properties of both ALS and K-ALS
in terms of fixed points of their corresponding mapping φ. The convergence theorems are
formulated in probability since these algorithms contain randomly initialized regularization
components.

4.2. Theorem for the convergence of ALS. We establish the following result for conver-
gence of the ALS algorithm for robust PCA.

Theorem 4.1. The following statements for the ALS algorithm hold with probability 1:
(1) All accumulation points of the iterates {(Bt,Ct,Wt)}∞t=1 produced by this algorithm are
its fixed points; (2) J(Bt,Ct,Wt) → J(B∗,C∗,W∗) as t → ∞, where (B∗,C∗,W∗) is
a fixed point; (3) ‖(Bt+1,Ct+1,Wt+1) − (Bt,Ct,Wt)‖ → 0 as t → ∞; and (4) either
{(Bt,Ct,Wt)}∞t=1 converges or its accumulation points form a continuum.

4.3. Main theorem: Convergence of K-ALS. We establish the following result for con-
vergence of the K-ALS algorithm for robust PCA.

Theorem 4.2. The following statements for the K-ALS algorithm hold with probability 1:
(1) All accumulation points of the iterates {Ωt}∞t=1 produced by this algorithm are its fixed
points; (2) J(Ωt) → J(Ω∗) as t → ∞, where Ω∗ is a fixed point; (3) ‖Ωt − Ωt+1‖ → 0 as
t → ∞; and (4) either {Ωt}∞t=1 converges or the accumulation points form a continuum.

4.4. Discussion on statements of theorems. The purpose of our theory is to guarantee
convergence of the ALS and K-ALS algorithms. While the convergence is not fully guaranteed
(when the accumulation points form a continuum), we note that also the theoretical guarantees
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for the agglomerative Lagrangian for PCP [23] are formulated only in terms of convergence of
the objective function, as we have in the second part of our theoretical statements (but the
authors of [23] do not have results for convergence in norm).

The type of convergence we have for K-ALS is slightly weaker than the one of K-means or
K-subspaces. For these algorithms one can prove convergence to a local minimum [4], whereas
here we prove only convergence to a fixed point. The difference is that for K-means and K-
subspaces, the best fit center or subspace is easily determined for each cluster, whereas the
robust ALS only guarantees convergence for each cluster. It is interesting to note that while
K-PCP easily determines a subspace for each fixed cluster, we cannot guarantee convergence
for the full algorithm (as in K-ALS). Indeed, K-PCP minimizes ||L||∗ + λ||X − L||1 within
each cluster, but for the partition it minimizes ||X−L||1 among clusters (due to the difficulty
of extending the nuclear norm out of sample). Therefore the resulting objective function for
our formulation of K-PCP is not even guaranteed to be monotonic.

5. Restoration of corrupted images.

5.1. Problem setting. We test different methods of local (and global) low rank modeling
for denoising images with impulsive noise as well as blind inpainting. The data consists
of 5 popular images and also the 100 test images of the Berkeley Segmentation Database
(BSD) [27]. The images are corrupted with i.i.d. additive Gaussian noise with standard
deviation σ, and a percentage of p0 random pixels per image (uniformly selected) are corrupted
with integers uniformly sampled between 0 and 255. For inpainting, the images are further
degraded by drawing a scratch. For many of the methods (in particular, K-ALS) the images
are represented by their 8×8 patches. That is, the actual data matrix X is formed by stacking
the vectors representing these patches as columns. Its size is thus 64×n, where n is the number
of pixels in the image. This matrix is transformed back to the image (after enhancing it) by
finding the average value of all coordinates representing the same pixel.

5.2. Methods, implementation details, and parameters. We compared K-ALS with the
following methods (sometimes combined with each other, though we reported only meth-
ods that were sufficiently fast and accurate): median filter (MF), iterated median filter
(IMF), structured sparse model selection (SSMS) [46], K-SVD [13, 2], low rank representation
(LRR) [25, 24], PCP, PCP(capped), LMaFit, K-PCP, K-PCP(capped), K-LMaFit, and two
variations (NL-Median1 and NL-Median2) of the nonlocal means method of [6]. When two
methods are combined, we use “+” to connect them, e.g., MF+SSMS, which means we apply
SSMS after MF.

We explain here various implementation issues of the different algorithms and the choice
of parameters. For IMF, we chose among 10 iterations the one with highest peak signal-
to-noise ratio (PSNR), thus giving an oracle advantage to this method. For local methods
based on the K-subspaces strategy (i.e., SSMS, K-ALS, K-PCP, K-LMaFit), we followed [46]
to learn K = 19 subspaces of dimension d = 8 with 18 bases for subspaces initialized on
artificial edges at given orientations and one low frequency discrete cosine transform basis
(our implementation is available online). Choosing K is a tradeoff between accuracy and
speed. The larger K is, the more accurate, but slower, the algorithm is. Note that this
initialization is important for good results.
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In order to account for Gaussian noise, we apply additional steps in the spirit of [46] (to be
consistent for all methods). We first recall that Yu, Sapiro, and Mallat [46] use the following
thresholding step for their estimator for X, X̃, in order to remove additional Gaussian noise.
The modified estimator X̂ is obtained by replacing each column x̃ of X̃ by the column

(5.1) x̂ = Bδ(BT x̃),

where B ∈ R
m×d′ is formed by stacking as columns the first d′ components of the basis of

the cluster containing x̃ (they use the full dimension d′ = 64) and for a = (a1, . . . , ad′) and
1 ≤ j ≤ d′, (δ(a))j = aj if |aj | > 3σ and = 0 otherwise (i.e., SSMS assumes knowledge of the
model parameter σ described in section 5.1).

For K-ALS and K-PCP we applied a similar thresholding procedure within each iteration
with d′ = 20. We chose this parameter since the SVD of the clusters of natural image patches
can be well approximated with rank 15 and slight overestimation cannot affect the results.

Before thresholding, K-ALS applies the following procedure within each iteration to re-
estimate the locations of corruption in the corresponding image: let Y denote the original
image, med(Y) the image obtained by applying the 4 × 4 median filter to Y, Ỹ the image
translated from the patches of the current iteration (before thresholding), and abs(·) the
elementwise absolute value. Furthermore, let r = abs(Y− Ỹ) and s = abs(Y−med(Y)). For
denoising, we identify in each iteration the corrupted pixels of a fixed percentage (p) as the ones
with the largest entries in r; for inpainting, we do the same with r + s at the first iteration
and with r thereafter (the purpose of the additional s for inpainting is to improve scratch
detection; however, for denoising such a process can falsely detect edges as corruption). This
update of W is very natural in the framework of K-ALS. Indeed, K-ALS has the advantage
of using application-dependent information in the estimate of locations of corrupted elements.

For the global low rank model (in particular, PCP), we addressed Gaussian noise by
further applying the SSMS algorithm [46] (so that the method is comparable to the other
strategies). Numerical experiments indicated that applying SSMS after the global low rank
model was slightly better than applying the thresholding described above and clearly better
than PCP alone. We did not notice an advantage of an implementation of (2.2) (which we
later refer to as stablePCP in Appendix A) over PCP and did not report it since it required
experimentation with the additional parameter ν.

We describe in section G.5 two robust variants of the nonlocal means algorithm [6]. We
have also tested the median variant of the nonlocal means toolbox on MATLAB exchange [30];
however, its performance was not satisfying and is thus not reported here.

For LRR [25, 24], it is not feasible to assign the data matrix itself as the dictionary (as
done in [25, 24]). We thus tried the following two options: the first was to use the initial basis
used for K-ALS, and the second was to use the output basis learned by K-ALS. We found out
that these two ways were comparable when we chose appropriate values for the regularization
parameter λ. We thus studied only the first case. More precisely, we take the first d′ = 20
vectors from each of the bases and form the dictionary by concatenating them in a matrix.
Similarly to PCP, we address Gaussian noise by further applying the SSMS algorithm.

We fixed the parameters of K-ALS for all 105 images as follows: λ1 = λ2 = λ3 = λ4 =
10−10, n1 = n2 = 1, and n3 = 5 (see section 3.1). For p, we tested both p = p0 and p = 2p0. We
capped both PCP(capped) andK-PCP(capped) at 20. For PCP andK-PCP, the parameter λ
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was chosen to be 0.01 after testing the largest PSNR obtained among λ = 10k, k = −3, . . . , 3.
Similarly, for PCP(capped)+SSMS and K-PCP(capped), the parameters (λ, γ) were chosen
to be (0.1, 0.001) after testing (10k, 10l), k, l = −3, . . . , 3. For LMaFit and K-LMaFit, we
fine-tuned the best parameters based on PSNRs of the outputs. We first tested the 7 values
{10k}3k=−3 and then searched around the best one in a finer scale until the results were not
improved.

For the parameter λ in LRR, we first noticed that λ = 10−3 obtained the best results
among {10k}3k=−3. To obtain even better results we tested the following 7 values for λ:
0.0003, 0.0005, 0.0007, 0.001, 0.0015, 0.0022, and 0.0032 (corresponding to k in [−3.5,−2.5]).
We chose λ = 0.0015 according to the best performance. As we explain below, we tested LRR
only for the 5 common images because it was too slow to run on the whole database.

5.3. Results. For each image, method, and choice of corruption/denoising parameters,
we averaged the PSNR over five simulations. Tables 1 and 2 report results of the different
methods for denoising impulsive noise and blind inpainting, respectively, for the five popular
images. We highlight the best results. Figures 1 and 2 plot the PSNR of the database of
100 images in several scenarios for denoising and inpainting, respectively. The image IDs are
sorted according to increasing PSNR of K-ALS(2p0) for better illustration.

The tables and figures omit some methods for the following reasons. The PCP algorithm
is slow (as is evident from Table 5); we thus ran PCP+SSMS and K-PCP only for these five
common images. Since MF+SSMS is similar to but better than MF+KSVD, and since SSMS
and K-SVD are designed only for Gaussian noise and thus not competitive at all, we reported
only MF+SSMS among these. As for the nonlocal medians variants, which are described in
section G.5, we report only NL-Median1 for blind inpainting and NL-Median2 for denoising
since they are the best for these problems.

The PSNR of K-LMaFit was in the order of 25dB, and we thus did not report it in the
tables. The reason for this poor performance is not clear to us since the distributed software
of LMaFit at the time of submitting the paper is not open source. LRR gives good results on
the 5 popular images, but it is slow; for example, it takes about a minute for K-ALS to finish
the House image and several hours for LRR. We were thus unable to test LRR on the large
database.

In addition to PSNR, we also evaluated the image quality by the structural similarity
(SSIM) index [42]. We report these results in Appendix D. We observe that the SSIM index
favors K-ALS more than PSNR. The performance of PCP(capped)+SSMS in terms of SSIM
oscillates much more, while it stays close to a certain level in terms of PSNR. Moreover, we
see that the performances of K-ALS(p0) and K-ALS(2p0) are more closely correlated to each
other when using SSIM than PSNR.

Besides PSNR and SSIM, we also demonstrate the visual quality of some denoising and
blind inpainting results in Figures 3 and 4, respectively. The visual quality is important.
Indeed, Figure 5 shows an image where PCP(capped)+SSMS obtains high values of both
PSNR and SSIM for blind inpainting, but its visual output is clearly not satisfying.

We observe that PCP+SSMS and K-PCP are not practical because of long running times.
Moreover, PCP+SSMS does not successfully restore images in general, and K-PCP (with
additional thresholding) also fails in some cases, e.g., the image House. PCP(capped)+SSMS
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Table 1
Performance (in PSNR) of denoising for 5 popular images. Each row lists results of different approaches

on a specific image corrupted by p0 impulsive noise and Gaussian noise with standard deviation σ. The number
in parentheses after K-ALS specifies the input parameter estimating the portion of corruptions. See section
5.3 for details on the parameters used in all the algorithms. The best results are in bold. K-ALS and LRR
outperform other methods for many of the cases; however, LRR is nearly two orders of magnitude slower than
K-ALS.
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10 30.77 31.84 26.35 26.61 22.06 22.81 24.74 24.96 24.63 29.73 24.11 29.18 31.59
5% 20 28.68 29.22 24.07 24.61 22.06 24.98 23.81 24.24 23.84 26.66 25.38 27.34 29.15

30 26.99 27.38 23.56 24.55 23.16 26.22 22.93 23.67 23.05 23.96 26.19 25.67 27.38
Barbara

10 29.30 30.84 24.34 25.31 19.26 19.59 24.59 24.77 24.35 29.20 19.77 28.45 28.35
10% 20 27.55 28.64 23.18 23.75 19.58 21.82 23.71 24.08 23.61 26.09 21.91 26.70 28.27

30 25.99 26.63 22.99 23.93 21.00 23.85 22.81 23.52 22.89 23.47 23.96 25.20 27.27

10 30.74 31.49 26.11 26.50 22.43 23.32 28.50 29.10 28.95 29.63 24.61 29.05 31.71
5% 20 28.88 29.30 24.51 24.55 22.54 25.46 26.55 27.46 27.06 26.69 25.94 27.43 29.15

30 27.38 27.69 24.43 24.63 23.97 26.63 25.05 26.34 25.58 24.10 26.67 26.00 27.64
Boat

10 29.70 30.84 24.52 25.30 19.76 20.15 28.29 28.84 28.42 29.13 20.43 28.52 29.39
10% 20 27.99 28.69 23.74 23.79 20.55 22.55 26.39 27.23 26.69 26.21 22.67 26.98 27.86

30 26.58 27.09 23.98 24.10 21.85 24.56 24.86 26.10 25.26 23.66 24.55 25.61 26.57

10 34.15 34.84 26.11 28.15 22.42 23.51 31.85 32.16 31.09 31.85 33.90 28.26 28.52
5% 20 31.76 32.17 24.32 26.17 22.90 25.87 29.81 30.13 28.60 27.89 31.38 27.14 27.10

30 29.79 30.10 24.80 26.43 24.92 28.11 27.24 28.81 26.93 24.81 30.23 25.99 25.88
House

10 32.96 34.12 24.75 26.66 19.75 20.25 31.27 31.52 30.42 31.41 28.75 27.74 28.17
10% 20 30.55 31.32 23.67 25.40 20.05 22.83 29.43 29.76 28.12 27.42 28.69 25.73 26.75

30 28.82 29.43 24.35 25.71 22.34 25.55 26.93 28.38 26.47 24.35 28.16 25.61 25.54

10 33.47 34.19 25.63 26.31 22.40 23.36 31.75 32.49 31.71 31.86 25.33 31.23 34.01
5%

20 31.29 31.69 23.92 24.53 22.76 25.62 29.28 30.40 29.17 27.81 26.36 29.39 31.31
30 29.54 29.85 24.64 25.09 24.31 27.95 27.37 28.95 27.53 24.76 27.96 28.02 29.57

Lena
10 32.35 33.49 24.16 25.23 19.74 20.15 31.48 32.11 31.22 31.39 20.40 30.74 31.29

10% 20 30.20 30.97 23.39 23.85 20.01 22.61 29.07 30.11 28.82 27.34 22.56 28.96 29.52
30 28.55 29.15 24.17 24.52 21.73 25.30 27.10 28.60 27.18 24.35 25.39 27.54 28.24

10 32.81 33.44 25.22 26.20 22.05 22.88 32.05 32.55 31.89 31.55 24.85 30.01 32.68
5% 20 31.01 31.42 24.16 24.54 22.32 24.94 30.03 30.64 29.53 27.71 25.87 28.75 30.95

30 29.48 29.82 24.73 25.01 23.73 27.50 28.15 29.25 27.91 24.75 27.68 27.83 29.40
Peppers

10 31.66 32.81 23.92 25.13 19.36 19.72 31.65 32.08 31.31 30.94 20.01 29.54 30.55
10% 20 29.88 30.74 23.40 23.78 19.57 21.96 29.69 30.24 29.10 27.20 21.99 28.37 29.15

30 28.41 29.07 24.18 24.40 20.97 24.62 27.75 28.81 27.47 24.32 24.76 27.15 28.05

and K-PCP(capped) are fast but do not work well in general. LMaFit and K-LMaFit failed
in general. The variants of the nonlocal medians cannot handle Gaussian noise well. The best
of them is comparable to K-ALS when the Gaussian noise is low, but is clearly worse as it
increases. It is interesting to note that these variants are often effective with texture (even with
noise), but do not perform well on smooth regions with noise. On the other hand, methods
based on the median filter (e.g., MF+SSMS and IMF) tend to oversmooth the image and
thus cannot handle textures well. For some blindly inpainted images, PCP(capped) obtained
high PSNR, but its perceptual quality was not good; that is, it was not able to remove many
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Table 2
Performance (in PSNR) of blind inpainting for 5 popular images. Each line lists results of different

approaches on a specific image corrupted by σ Gaussian noise, p0 impulsive noise, and some scratches. The
number in parentheses after K-ALS specifies the input parameter estimating the portion of corruptions. See
section 5.3 for details on the parameters used in all the algorithms. The best results are in bold. K-ALS and
LRR outperform other methods for most images except Peppers, which is relatively smooth (K-ALS results
improve when we reduce the dimension and the number of subspaces); however, LRR is nearly two orders of
magnitude slower than K-ALS.
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0 32.26 32.97 29.41 29.00 27.33 27.33 25.22 25.22 25.22 26.75 28.53 29.99 31.99
0% 5 31.32 32.23 28.49 28.31 27.09 27.10 25.15 25.23 25.06 26.60 27.95 29.25 31.09

10 30.41 30.90 26.70 26.42 26.85 26.97 24.72 24.96 24.69 26.04 27.40 28.51 29.95
0 29.67 31.60 27.84 27.11 20.77 20.76 24.91 24.91 24.91 26.21 21.53 29.15 30.51

Barbara 5% 5 29.30 31.02 27.23 26.68 20.96 21.00 24.90 24.99 24.77 26.05 21.72 28.56 30.06
10 28.98 29.97 25.53 25.16 21.07 21.66 24.58 24.78 24.42 25.53 22.37 27.92 29.19
0 25.43 30.45 25.74 25.32 18.33 18.33 24.56 24.54 24.55 25.68 18.44 28.40 29.12

10% 5 26.05 30.03 25.34 25.12 18.44 18.43 24.62 24.70 24.46 25.53 18.53 27.93 28.93
10 26.81 28.95 24.06 24.21 18.68 18.98 24.34 24.53 24.18 25.05 19.08 27.28 28.32

0 30.67 32.80 29.76 28.63 26.96 26.96 30.31 30.31 30.31 29.54 28.88 30.65 33.27
0% 5 30.25 31.84 28.93 28.07 26.67 26.66 29.73 29.95 29.87 29.25 27.91 29.46 31.49

10 29.59 30.45 26.48 26.15 26.40 26.51 28.41 29.01 28.89 28.57 27.08 28.58 30.17
0 29.66 31.65 27.59 26.93 21.06 21.05 29.74 29.72 29.72 29.24 21.92 29.37 32.26

Boat 5% 5 29.53 30.70 26.95 26.52 21.16 21.19 29.32 29.55 29.32 29.02 22.01 28.55 31.01
10 28.92 29.65 25.32 25.01 21.35 21.98 28.14 28.72 28.41 28.26 22.69 28.00 29.76
0 28.00 30.88 25.57 25.42 18.66 18.66 28.84 28.94 28.95 28.90 18.83 28.75 31.07

10% 5 28.11 30.02 25.06 25.11 18.82 18.81 28.77 28.98 28.69 28.59 18.95 28.05 30.25
10 27.99 29.30 23.94 24.11 19.08 19.42 27.74 28.31 28.00 27.92 19.63 27.50 29.09

0 36.44 35.89 27.35 25.66 23.67 23.67 31.11 31.10 32.05 31.44 33.64 29.44 30.05
0% 5 33.93 33.63 27.02 25.49 23.66 23.66 30.89 31.05 31.57 30.37 31.38 29.10 29.28

10 32.19 31.42 25.71 24.84 23.71 23.83 30.08 30.52 30.54 29.51 29.63 28.38 28.55
0 35.41 36.58 26.38 24.65 20.00 20.00 29.98 29.98 31.40 30.81 28.95 28.39 29.53

House 5% 5 33.29 33.90 25.81 24.62 20.08 20.12 29.99 30.06 30.92 30.14 27.59 28.52 28.84
10 31.79 31.54 24.54 24.26 20.35 20.89 29.16 29.75 30.00 29.03 27.15 28.21 28.24
0 32.67 35.80 24.58 23.63 18.02 18.02 28.43 28.53 30.48 30.19 22.67 27.93 29.19

10% 5 32.15 33.67 24.26 23.69 18.16 18.16 28.94 28.74 30.23 29.71 22.36 28.85 28.39
10 31.20 32.23 23.60 23.56 18.47 18.80 28.60 28.70 29.39 28.54 23.16 27.94 27.92

0 35.32 36.65 30.94 29.23 27.72 27.72 34.38 34.38 34.38 33.11 30.90 32.81 36.48
0% 5 34.15 34.97 29.72 28.69 27.49 27.50 33.24 33.54 33.33 32.64 29.73 31.76 34.36

10 32.84 33.03 26.26 26.62 27.36 27.47 31.49 32.29 31.70 31.30 28.75 30.82 32.88
0 33.71 35.46 27.99 27.00 21.19 21.19 33.50 33.44 33.44 32.78 22.46 31.71 35.31

Lena 5% 5 33.10 34.29 26.87 26.94 21.37 21.43 32.73 32.94 32.55 32.33 22.54 30.94 33.81
10 32.15 32.77 24.80 25.39 21.45 22.12 31.14 31.89 31.28 30.90 23.23 30.25 32.43
0 31.24 34.81 25.45 25.55 18.72 18.72 32.00 32.18 32.56 32.44 18.90 31.15 34.20

10% 5 31.73 33.61 24.92 25.57 18.84 18.85 31.91 32.19 32.02 31.93 19.05 30.50 33.09
10 31.17 32.22 23.76 24.45 19.17 19.51 30.57 31.29 30.75 30.49 19.75 29.75 31.69

0 29.22 31.26 31.36 29.23 27.68 27.67 34.22 34.22 34.22 32.93 30.97 32.08 32.58
0% 5 28.66 30.24 29.19 28.68 27.38 27.37 33.22 33.46 33.34 32.58 29.78 30.98 31.51

10 29.50 30.85 27.62 26.80 20.93 20.93 31.89 32.40 32.00 31.28 28.74 30.23 31.12
0 29.50 30.85 27.62 26.80 20.93 20.93 33.31 33.25 33.45 32.48 22.21 31.31 32.08

Peppers 5% 5 29.07 30.64 26.49 26.85 21.04 21.09 32.68 32.89 32.80 32.07 22.42 30.37 31.34
10 29.09 30.40 24.60 25.38 21.16 21.74 31.45 31.92 31.50 30.79 23.02 29.75 30.86
0 28.54 31.09 25.12 25.32 18.43 18.42 31.85 31.99 32.69 32.12 18.69 30.65 31.41

10% 5 29.07 30.14 24.60 25.35 18.55 18.55 31.74 31.96 32.17 31.62 18.69 29.86 30.98
10 28.70 29.98 23.62 24.40 18.80 19.11 30.74 31.26 30.95 30.37 19.36 29.14 30.40
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(b) σ = 20, p0 = 5%
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(c) σ = 30, p0 = 5%
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(d) σ = 10, p0 = 10%
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(e) σ = 20, p0 = 10%
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(f) σ = 30, p0 = 10%

Figure 1. Performance (in PSNR) of denoising for the BSD database [27]. In each subfigure, PSNR
of a specific corrupted scenario (see the subcaptions) is plotted versus the sorted image IDs. The number in
parentheses after K-ALS specifies the input estimating the portion of corruptions. Other methods use the best
values from a broad range of parameters; see section 5.3. For most of the cases, K-ALS outperforms the other
algorithms, especially when the Gaussian noise is high.

scratches. Of all the methods we tested, LRR was the only one that could compete with
K-ALS in terms of quality. However, it is very slow, costing two orders of magnitude more
computation time. Even when significantly overestimating its main parameter p, K-ALS
performs very well; in particular, it is good for various scenarios including texture, noisy
smooth regions, and scratches.

6. Conclusions. We have shown that localized versions of robust PCA are sometimes nec-
essary and sufficient to model corrupted data which has local (but not global) low-dimensional
structure. In particular, we see that the problems of denoising images with impulsive noise and
blind inpainting can be approached via localized robust PCA methods. For these problems
we have shown that a robust PCA algorithm, which is based on an ALS approach, performs
very well. We have also established a convergence result for the proposed procedure. There
is still much to do. In particular, there is almost no theory for when recovery is possible with
a manifold model; we suspect that it may be possible to construct a theory analogous to that
of [41].

Appendix A. Numerical simulations with a single subspace. To evaluate the perfor-
mance of ALS in comparison to other RPCA methods, several simulations are conducted. We
distinguish here and in what follows between p0, the ground truth percentage of sparse cor-
ruptions (i.e., percentage of impulsive noise), and p, the input parameter of ALS estimating
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(a) σ = 0, p0 = 0%
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(b) σ = 5, p0 = 0%
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(c) σ = 10, p0 = 0%
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(d) σ = 0, p0 = 5%
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(e) σ = 5, p0 = 5%
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(f) σ = 10, p0 = 5%
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(g) σ = 0, p0 = 10%
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(h) σ = 5, p0 = 10%
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Figure 2. Performance (in PSNR) of blind inpainting for the BSD database [27]. In each subfigure,
PSNR of a specific corrupted scenario is plotted versus the sorted image IDs (the impulsive and Gaussian noise
parameters are in the subcaptions, and the scratch used throughout this paper is also added). The number
in parentheses after K-ALS specifies the input estimating the portion of corruptions. Other methods use the
best values from a broad range of parameters; see section 5.3. In most cases K-ALS(p0) outperforms other
algorithms. However, K-ALS(2p0) is advantageous only with low levels of corruption. For a few images the
PSNR values of PCP(capped) are high, but their perceptual quality is not as satisfying.

the percentage of corruption, and between d0, the ground truth rank of the clean matrix, and
d, the input rank of the matrices B and C for the ALS algorithm.

We generate a low rank matrix X0 as a product of two independent m × d0 and d0 × n
matrices whose entries are i.i.d. N (0, 1) random variables and scale it to have unit spectral
norm. Due to the randomness, we repeat the experiment 100 times. We form X by inde-
pendently adding to each element of X0 Gaussian noise with standard deviation σ (where
σ = 0.05 or σ = 0 when there is no Gaussian noise). Finally, p0 randomly chosen pixels
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Figure 3. From left to right: noisy images, IMF, MF+SSMS, NL-Median2, K-PCP(capped), and K-
ALS( 2p0). The additive Gaussian noise has standard deviation σ = 30 for the first image and σ = 20 for the
other three. The first three images have 5% impulsive noise, and the last one has 10%. K-ALS, even with
overestimated p = 2p0, performs very well perceptually.

of X (p0 = 5%, 10%, 20%) are assigned uniform random values in the interval [−a, a], where
a = maxi,j |X0ij |.

We test the following RPCA algorithms on this data: PCP, PCP(capped), stablePCP, sta-
blePCP(capped), LMaFit, ALS, and ALSunreg, where ALSunreg is the ALS algorithm without
regularization, i.e., λ1 = λ2 = λ3 = 0. All of our implementations appear in supplementary
material available at http://math.umn.edu/∼lerman/kals. For PCP, we use the fast imple-
mentation suggested in [23] with λ = (mn)−0.25. We recall that PCP(capped) is the version
of PCP mentioned in section 2, which requires an upper bound, i.e., a cap, on the intrin-
sic dimension. Since we are not aware of any available code for minimizing (2.2), we have

http://math.umn.edu/~lerman/kals
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Figure 4. From top to bottom: corrupted images, IMF, MF+SSMS, NL-Median1, PCP(capped)+SSMS,
and K-ALS( 2p0). The first image is corrupted only by scratches. The rest also have 5% impulsive noise and
σ = 10 Gaussian noise. K-ALS, even with overestimated p = 2p0, completely removes the scratches and still
preserves image quality.

implemented it by simple alternation (solving for each variable separately) and refer to this
implementation as stablePCP. Its capped version is similar to that of PCP (but does not
require the parameter γ).
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Figure 5. Demonstration of the importance of visual quality. From left to right, top to bottom: image
corrupted by scratches only (no Gaussian noise or impulsive noise), outputs of NL-Median1 (PSNR = 29.51,
SSIM = 0.8637), PCP(capped)+SSMS (PSNR = 32.66, SSIM = 0.9425), and ALS( 2p0) (PSNR = 31.70,
SSIM = 0.9425), where ALS( 2p0) uses double the true percentage of corruptions, while the other methods use
the best values for their parameters among a fairly broad range. Although the PSNR and SSIM are high for the
third image, its perceptual quality is not as good as the second and the fourth images. The second image is not
as good as the fourth one due to unremoved scratches and oversmoothing.

For ALS, PCP(capped), stablePCP(capped), and LMaFit(oracle), we input the intrinsic
rank to be d0+3 (since they all can handle an overestimation for this parameter; see Appendix
B). For PCP(capped) we input in addition to λ of (2.1) a parameter γ, which is present
in every ADMM (alternating direction method of multipliers) implementation for PCP (see
supplemental code at http://math.umn.edu/∼lerman/kals). We tested (λ, γ) = (10k, 10l)
for k, l = −3, . . . , 3 and selected (λ, γ) = (0.1, 10) based on the true fitting error (defined
below); therefore our implementation of PCP(capped) is of oracle type. For stable(PCP) and
stablePCP(capped), we tested (λ, ν) = (10k, 10l) for k, l = −3, . . . , 3 and selected (λ, ν) =
(0.1, 100) (thus stable(PCP) and stablePCP(capped) are also of oracle type). For LMaFit, we
chose μ = 103 by minimizing the true fitting error among μ = 10k, k = −3, . . . , 5. We thus
refer to the method as LMaFit(oracle). The parameters for ALS were specified in section 2.2.

For all of the experiments n = 1000. For any RPCA algorithm, we quantify the recovery
of the underlying low rank model by the following relative fitting error:

(A.1) e =
‖X̃−X0‖F

‖X0‖F ,

http://math.umn.edu/~lerman/kals
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Table 3
Mean relative fitting error (in percentage) on simulations without Gaussian noise. The random data matrix

(generated 100 times) is m × 1000, and its underlying rank is d0. It is corrupted by p0 sparse noise (random
values).

m 100 200 400 800
d0 5 10 20 40
p0 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ALS(2p0) 1.10 6.02 20.95 0.49 2.58 10.71 0.08 0.49 5.48 0.04 0.06 1.19
ALS(p0) 0.15 0.54 2.93 0.02 0.05 0.66 0.00 0.01 0.11 0.00 0.01 0.02

PCP(capped) 0.43 6.56 19.86 0.44 3.69 10.97 0.61 2.51 5.93 0.90 2.60 5.35
PCP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

LMaFit(oracle) 0.95 1.43 3.77 1.01 1.54 2.47 1.13 1.71 2.80 1.36 2.05 3.34
stablePCP 1.48 1.96 5.84 1.58 1.99 13.83 1.81 3.52 79.37 2.70 53.66 132.42

stablePCP(capped) 1.44 1.87 4.88 1.59 2.00 3.41 1.80 2.51 5.16 2.18 3.30 6.43
ALSunreg(2p0) 1.08 4.86 29.26 0.16 2.30 19.25 0.08 0.31 6.89 0.00 0.20 1.74
ALSunreg(p0) 2.71 7.06 31.89 0.14 0.68 9.14 0.00 0.03 0.76 0.00 0.00 0.05

Table 4
Mean relative fitting error (in percentage) on simulations with Gaussian noise (σ = 0.05). The data

matrix is m × 1000, and its underlying rank is d0. It is corrupted by additive Gaussian noise and p0 sparse
noise (random values).

m 100 200 400 800
d0 5 10 20 40
p0 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ALS(2p0) 7.53 9.21 21.60 6.60 7.82 12.70 6.06 7.13 10.32 5.87 6.91 10.00
ALS(p0) 6.65 7.04 8.63 5.80 6.13 6.84 5.28 5.56 6.19 5.09 5.36 5.97

PCP(capped) 14.27 15.31 20.56 11.89 12.74 14.91 10.03 10.74 12.43 8.74 9.41 10.95
PCP 20.80 24.37 41.59 15.86 18.97 26.25 12.40 13.34 17.61 10.28 11.50 14.43

LMaFit(oracle) 5.38 5.84 6.95 5.23 5.69 6.79 5.11 5.56 6.69 5.14 5.65 6.90
stablePCP 8.32 9.76 17.24 10.60 13.26 31.06 13.64 22.85 84.08 20.29 61.08 133.21

stablePCP(capped) 7.52 8.52 14.17 6.65 7.53 10.49 6.10 7.03 9.98 5.81 6.74 10.01
ALSunreg(2p0) 7.78 11.24 34.52 6.66 7.92 18.50 6.20 7.30 11.65 5.95 7.02 10.29
ALSunreg(p0) 7.35 9.88 23.36 5.87 6.20 9.13 5.41 5.70 6.42 5.17 5.44 6.08

where X̃ is the low rank estimation for X. We report the mean of this error (for the 100
different times the data was randomly generated) and for fixed values of m, d0, and p0 in
Tables 3 and 4 when σ = 0 and σ = 0.05, respectively. Note that in these tables, the error
is shown in percentage (%), ALS(p0) inputs p0 as the estimate of portion of corruptions, i.e.,
p = p0, while ALS(2p0) has p = 2p0.

We observe that PCP performs the best for clean data, but it could not handle Gaussian
noise well. ALS works better with higher ambient dimensions, since in this case there are
more equations for the least squares solution (with the same number of variables), and thus it
increases the accuracy. ALS is also more accurate when the portion of corruptions decreases.
We note that ALS(p0) performs better than LMaFit(oracle) for clean data and that they are
comparable for noisy data. As for ALS(2p0), it performs better than PCP(capped) in general.
When the ambient dimension is high or the corruption level is low, then it performs better
than LMaFit(oracle) for clean data and comparably to it for noisy data, whereas for the rest
of the cases it is not as good as LMaFit(oracle). We also observe that the regularization
for ALS improves the results, and experiments show this improvement is due to the terms
λ1‖B‖2F + λ2‖C‖2F .
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Table 5
The mean running times (in seconds) of the simulations with Gaussian noise (σ = 0.05). The data matrix

is m × 1000, and its underlying rank is d0. It is corrupted by additive Gaussian noise and p0 sparse noise
(random values).

m 100 200 400 800
d0 5 10 20 40
p0 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ALS(2p0) 0.18 0.17 0.18 0.48 0.50 0.48 0.84 0.81 0.80 2.14 2.10 2.04
ALS(p0) 0.18 0.18 0.18 0.49 0.49 0.50 0.84 0.83 0.82 2.16 2.15 2.10

PCP(capped) 0.06 0.06 0.06 0.18 0.18 0.19 0.34 0.32 0.33 0.78 0.78 0.78
PCP 4.83 4.81 5.21 16.54 16.42 16.15 89.94 86.61 83.94 581.77 569.24 555.28

LMaFit(oracle) 0.26 0.31 0.46 0.56 0.66 0.93 0.93 1.10 1.54 1.79 2.17 3.11
stablePCP 1.32 1.36 1.50 4.05 4.42 5.24 26.04 30.20 91.69 172.03 539.39 775.11

stablePCP(capped) 0.71 0.74 0.83 2.10 2.24 2.68 11.18 11.93 14.74 61.04 64.75 81.20

Table 5 reports the speed of these algorithms with σ = 0.05 (the running times are
comparable when σ = 0). The experiments were performed using a Dual processor Intel Core 2
CPU at 2.66GHz with 2 GB of memory. We observe that PCP(capped) is the fastest method
(though we did not take into account the repetitions for the choices of the oracle parameters),
and ALS is right after it. LMaFit is also comparable to these two in terms of speed (again,
repetitions for best parameters were not taken into account). On the other hand, PCP is
extremely slow.

Appendix B. Effect of the parameters of ALS. We experimentally demonstrate the
dependence of the ALS algorithm on the modeling parameters p and d and the regularization
parameters λ1, λ2, and λ3. Figures 6 and 7 plot the relative fitting error versus p for different
experimental settings with fixed d = d0 + 3 (λ1 = λ2 = λ3 = 10−10 here and below, unless
specified). Each subfigure has a different value of m, d0, and p0, where σ = 0 in Figure 6 and
σ = 0.05 in Figure 7. Figures 8 and 9 plot the relative fitting error versus d for ALS(2p0),
ALS(p0), PCP(capped), and LMaFit(oracle) with the same choice of subfigure parameters as
in Figures 6 and 7. We conclude from these figures that the ALS algorithm tends to be robust
to the overestimation of the rank and it also allows the overestimation of p to some degree.
The ALS algorithm is less robust to the underestimation of these two parameters; however, it
can still perform well under very mild underestimation.

In order to test the effect of the regularization parameters in ALS, we set λ1 = λ2 =
λ3 = 10k, where k = −4, . . . ,−16. We found that ALS is stable w.r.t. both accuracy and
speed when λ1, λ2, and λ3 are sufficiently small. The accuracy and speed for one scenario are
displayed in Figures 10 and 11, respectively.

Appendix C. Estimation of the rank in ALS. Since ALS is robust to overestimation of
the rank, we suggest the following strategy to estimate the underlying low rank of a corrupted
matrix. We apply ALS with an increasing sequence of dimensions d1 < · · · < dt and denote
the corresponding low rank estimators of X by X̃1, . . . , X̃t. We then estimate the ranks of
these estimators and denote them by d̃1, . . . , d̃t, respectively. This estimated sequence would
increase first, be equal to the underlying rank d0 for a while, and finally increase again because
of the corruptions. Finding the “stable phase” (i.e., when the sequence does not increase) will
determine the appropriate rank.
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Figure 6. The performance of the ALS algorithm for different values of the parameter p without Gaussian
noise. In each figure, the mean relative fitting errors are plotted versus p for different settings, where the data
matrix is m× 1000, its underlying rank is m/20, and the data matrix is corrupted by p0 sparse (or impulsive)
noise. From top to bottom, m = 100, 200, 400, and 800, respectively. From left to right, p0 = 0.05, 0.1, and
0.2, respectively. The ALS algorithm seems to be robust to overestimation of p, especially when the ambient
dimension (m) is large.

To estimate the ranks of the different estimators, we apply second order differences (SODs)
to detect abrupt changes in the singular values of these estimators. Indeed, if the underlying
rank of a matrix is r, then the top (r + 1) singular values of the matrix drop very quickly,
while the ones following them decrease more slowly. The maximal value of the SODs of the
singular values is thus expected to occur at location r+1. If σ1, . . . , σm are the singular values
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Figure 7. The performance of the ALS algorithm for different values of the parameter p with Gaussian
noise (σ = 0.05). In each figure, the mean relative fitting errors are plotted versus p for different settings, where
the data matrix is m × 1000, its underlying rank is m/20, and the data matrix is corrupted by p0 sparse (or
impulsive) noise and additive Gaussian noise. From top to bottom, m = 100, 200, 400, and 800, respectively.
From left to right, p0 = 0.05, 0.1, and 0.2, respectively. The ALS algorithm seems to be robust to overestimation
of p, especially when the ambient dimension (m) is large.

of an m× n estimator (assume m < n without loss of generality), then the SODs obtain the
form

(C.1) S(i) = σi−1 + σi+1 − 2σi, i = 2, . . . ,m− 1,
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Figure 8. The effect of the parameter d on the performance of the algorithms ALS( 2p0), ALS( p0),
PCP(capped), and LMaFit(oracle) without Gaussian noise. In each figure, the relative fitting errors are plotted
versus d for different settings, where the data matrix is m × 1000, its underlying rank is d0 = m/20, and
the data matrix is corrupted by p0 sparse (or impulsive) noise. From top to bottom, m = 100, 200, 400, and
800, respectively. From left to right, p0 = 0.05, 0.1, and 0.2, respectively. The ALS algorithm is robust to
overestimation of d, especially when the ambient dimension (m) is large.

and the estimated rank d̂ can be expressed by

(C.2) d̂ = argmax
i

S(i) − 1.

Note that this procedure is not able to detect the rank of a matrix if r ≥ m− 2. However, in
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Figure 9. The effect of the parameter d on the performance of the algorithms ALS( 2p0), ALS(p0),
PCP(capped), and LMaFit(oracle) with Gaussian noise (σ = 0.05). In each figure, the relative fitting errors
are plotted versus d for different settings, where the data matrix is m× 1000, its underlying rank is d0 = m/20,
and the data matrix is corrupted by p0 sparse (or impulsive) noise and additive Gaussian noise. From top to
bottom, m = 100, 200, 400, and 800, respectively. From left to right, p0 = 0.05, 0.1, and 0.2, respectively. The
ALS algorithm is robust to overestimation of d, especially when the ambient dimension (m) is large.

most problems where the rank is relatively low, this is not the case.
We estimated the rank for the synthetic setting of Appendix A. We chose an arithmetic

sequence {di}20i=1 such that d1 = 1 and d20 = 0.2 · m. We compared the rank estimated by
ALS with that by PCP and PCP(capped), where the cap for PCP(capped) was 0.2 ·m. We
considered both output values of d0 and d0 + 1 as successes (after all, ALS is not sensitive
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Figure 10. The relative fitting error for the ALS algorithm with different values of the regularization
parameters λ1, λ2, and λ3. The left figure is without Gaussian noise, and the right one is with Gaussian noise
(σ = 0.05). The ALS algorithm seems to be robust to the choice of the regularization parameters if they are
sufficiently small.
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Figure 11. The running time for the ALS algorithm with different values of the regularization parameters
λ1, λ2, and λ3. The left figure is without Gaussian noise, and the right one is with Gaussian noise (σ = 0.05).
The choice of regularization parameters does not affect the speed of the algorithm.

to overestimation, and the estimated ranks were either no greater than d0 + 1 or equal to
d20). All synthetic scenarios were repeated 100 times. We found out that these three methods
worked well: PCP worked perfectly; ALS made only one mistake (out of 100) when m = 100,
p = 20%, and Gaussian noise was added; PCP(capped) was correct for about 75% of the
random samples, when m = 100, p = 20%, and no Gaussian noise was added and when
m = 100, 200 and p = 20% with Gaussian noise and was 100% correct otherwise.

Appendix D. Restoration of corrupted images in SSIM. We report the results of the
experiments in section 5.3 using SSIM [46] instead of PSNR. For the five common images,
SSIM for impulsive denoising is shown in Table 6 and for blind inpainting in Table 7. For the
100 images from the BSD database, SSIM is demonstrated in Figure 12 for denoising and in
Figure 13 for blind inpainting.

Appendix E. Testing detection of corrupted locations. We test the detection of cor-
rupted locations by K-ALS on the 5 popular images (used earlier) in comparison with other
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Table 6
Performance (in SSIM) of denoising for 5 popular images. Each line lists results of different approaches

on a specific image corrupted by σ Gaussian noise and p0 impulsive noise. The best results are in bold. K-ALS
outperforms other methods for most images except for Peppers.
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C
P
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S
S
M
S

K
-P

C
P

L
R
R

10 0.897 0.912 0.654 0.656 0.582 0.616 0.726 0.754 0.727 0.846 0.641 0.874 0.895
5% 20 0.836 0.849 0.538 0.557 0.578 0.672 0.654 0.692 0.642 0.679 0.681 0.812 0.827

30 0.777 0.791 0.509 0.554 0.625 0.710 0.604 0.653 0.595 0.535 0.708 0.750 0.768
Barbara

10 0.867 0.896 0.566 0.607 0.425 0.442 0.723 0.749 0.717 0.832 0.444 0.859 0.875
10% 20 0.799 0.826 0.485 0.521 0.421 0.516 0.651 0.686 0.634 0.655 0.517 0.797 0.806

30 0.733 0.763 0.473 0.529 0.495 0.600 0.601 0.648 0.586 0.509 0.603 0.739 0.748

10 0.839 0.854 0.610 0.618 0.525 0.571 0.750 0.792 0.787 0.794 0.601 0.807 0.844
5% 20 0.770 0.783 0.496 0.500 0.523 0.633 0.673 0.727 0.700 0.619 0.640 0.742 0.772

30 0.715 0.727 0.489 0.496 0.581 0.663 0.622 0.682 0.641 0.473 0.662 0.688 0.714
Boat

10 0.812 0.841 0.529 0.565 0.383 0.404 0.746 0.787 0.777 0.777 0.404 0.795 0.833
10% 20 0.740 0.765 0.465 0.464 0.368 0.485 0.668 0.723 0.690 0.596 0.491 0.728 0.760

30 0.679 0.704 0.472 0.471 0.461 0.567 0.618 0.678 0.630 0.448 0.572 0.679 0.704

10 0.878 0.888 0.508 0.600 0.482 0.537 0.848 0.856 0.834 0.804 0.874 0.821 0.815
5% 20 0.836 0.844 0.410 0.497 0.519 0.604 0.812 0.824 0.776 0.598 0.816 0.794 0.783

30 0.797 0.805 0.435 0.527 0.612 0.684 0.759 0.800 0.712 0.442 0.790 0.767 0.752
House

10 0.861 0.879 0.452 0.547 0.323 0.350 0.845 0.853 0.792 0.790 0.681 0.816 0.811
10% 20 0.810 0.828 0.391 0.469 0.338 0.447 0.811 0.821 0.767 0.578 0.715 0.794 0.775

30 0.765 0.784 0.416 0.498 0.449 0.559 0.761 0.794 0.702 0.422 0.698 0.777 0.747

10 0.884 0.894 0.498 0.530 0.477 0.531 0.849 0.871 0.846 0.811 0.574 0.868 0.890
5% 20 0.837 0.847 0.402 0.429 0.516 0.616 0.799 0.831 0.781 0.603 0.632 0.826 0.846

30 0.794 0.805 0.427 0.451 0.605 0.700 0.759 0.800 0.719 0.442 0.703 0.793 0.810
Lena

10 0.864 0.884 0.433 0.485 0.318 0.342 0.848 0.868 0.839 0.796 0.351 0.863 0.881
10% 20 0.808 0.828 0.383 0.400 0.337 0.447 0.797 0.828 0.773 0.582 0.441 0.819 0.833

30 0.758 0.781 0.414 0.428 0.441 0.576 0.755 0.795 0.709 0.422 0.578 0.784 0.796

10 0.850 0.860 0.479 0.523 0.453 0.503 0.834 0.847 0.830 0.794 0.549 0.838 0.856
5% 20 0.812 0.822 0.401 0.425 0.488 0.578 0.802 0.818 0.776 0.596 0.600 0.810 0.823

30 0.776 0.786 0.437 0.444 0.575 0.673 0.771 0.792 0.715 0.439 0.676 0.783 0.795
Peppers

10 0.833 0.851 0.425 0.478 0.302 0.324 0.831 0.844 0.825 0.780 0.332 0.834 0.848
10% 20 0.780 0.802 0.380 0.391 0.313 0.416 0.798 0.813 0.768 0.575 0.414 0.803 0.810

30 0.740 0.763 0.417 0.422 0.407 0.538 0.766 0.787 0.706 0.419 0.546 0.777 0.781

appropriate methods (K-PCP(capped), MF+SSMS, IMF, NL-Median2, K-LMAFit, LRR).
For each method, we compute r = abs(Y − Ỹ), where Y is the input image and Ỹ is the
output of that method, and identify the corrupted pixels of the true percentage (p0) as the
ones with the largest entries in r. We also test K-ALS(2p0), where the true percentage of
corruption is overestimated by a factor of two (unlike all other methods). The detection errors
are displayed in Figures 14 and 15. The K-ALS algorithm (with p0 percentage) outperforms
other methods (with the same percentage p0) in terms of detecting the corrupted locations
in most cases, especially in the presence of impulsive noise. We believe that the good perfor-
mance of K-ALS in terms of corruption detection is what helps it in obtaining good denoising
and inpainting results.
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Table 7
Performance (in SSIM) of blind inpainting for 5 popular images. Each line lists results of different ap-

proaches on a specific image corrupted by σ Gaussian noise, p0 impulsive noise, and some scratches. The best
results are in bold. We note that for most cases K-ALS outperforms other methods.
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0 0.956 0.959 0.938 0.944 0.945 0.945 0.809 0.809 0.809 0.860 0.949 0.937 0.960
0% 5 0.932 0.936 0.873 0.891 0.912 0.911 0.780 0.789 0.784 0.839 0.915 0.898 0.921

10 0.904 0.908 0.730 0.717 0.886 0.887 0.725 0.755 0.732 0.788 0.888 0.866 0.890
0 0.936 0.950 0.851 0.808 0.564 0.5664 0.798 0.798 0.798 0.846 0.587 0.920 0.935

Barbara 5% 5 0.913 0.927 0.791 0.765 0.562 0.567 0.773 0.782 0.772 0.824 0.583 0.883 0.907
10 0.882 0.895 0.657 0.644 0.557 0.589 0.721 0.749 0.722 0.770 0.610 0.851 0.877
0 0.863 0.938 0.710 0.690 0.408 0.407 0.784 0.784 0.784 0.831 0.406 0.903 0.893

10% 5 0.848 0.914 0.670 0.667 0.406 0.407 0.764 0.772 0.756 0.807 0.407 0.868 0.879
10 0.830 0.877 0.574 0.594 0.406 0.423 0.715 0.741 0.711 0.751 0.431 0.837 0.852

0 0.920 0.930 0.930 0.921 0.932 0.932 0.847 0.847 0.847 0.851 0.941 0.929 0.959
0% 5 0.884 0.894 0.853 0.853 0.878 0.871 0.812 0.830 0.825 0.832 0.877 0.852 0.883

10 0.843 0.851 0.664 0.673 0.826 0.826 0.748 0.791 0.789 0.787 0.828 0.809 0.837
0 0.900 0.918 0.793 0.784 0.538 0.538 0.838 0.838 0.838 0.845 0.566 0.902 0.937

Boat 5% 5 0.864 0.882 0.730 0.737 0.526 0.528 0.808 0.824 0.818 0.825 0.553 0.831 0.876
10 0.821 0.837 0.598 0.602 0.508 0.548 0.744 0.786 0.781 0.776 0.572 0.792 0.829
0 0.862 0.907 0.656 0.665 0.369 0.369 0.824 0.824 0.827 0.837 0.372 0.886 0.902

10% 5 0.829 0.868 0.613 0.635 0.369 0.369 0.800 0.815 0.810 0.814 0.371 0.821 0.860
10 0.790 0.824 0.520 0.548 0.367 0.386 0.737 0.779 0.770 0.764 0.390 0.777 0.813

0 0.955 0.954 0.866 0.855 0.849 0.849 0.868 0.868 0.883 0.881 0.929 0.899 0.894
0% 5 0.914 0.915 0.775 0.810 0.809 0.805 0852 0.860 0.865 0.846 0.867 0.856 0.839

10 0.870 0.866 0.567 0.629 0.767 0.770 0.831 0.841 0.831 0.788 0.817 0.815 0.815
0 0.953 0.961 0.703 0.692 0.457 0.457 0.854 0.855 0.877 0.872 0.755 0.871 0.883

House 5% 5 0.907 0.915 0.614 0.677 0.438 0.443 0.845 0.848 0.858 0.841 0.744 0.837 0.834
10 0.863 0.867 0.480 0.563 0.435 0.474 0.820 0.831 0.826 0.776 0.740 0.809 0.811
0 0.925 0.956 0.540 0.566 0.300 0.300 0.829 0.833 0.867 0.867 0.454 0.861 0.874

10% 5 0.881 0.910 0.498 0.564 0.295 0.297 0.829 0.831 0.848 0.832 0.435 0.839 0.827
10 0.844 0.862 0.433 0.510 0.301 0.323 0.812 0.818 0.819 0.766 0.504 0.809 0.806

0 0.950 0.955 0.932 0.924 0.933 0.933 0.918 0.918 0.918 0.909 0.943 0.940 0.970
0% 5 0.916 0.921 0.809 0.837 0.883 0.880 0.883 0.894 0.889 0.885 0.888 0.887 0.911

10 0.886 0.888 0.549 0.590 0.851 0.852 0.846 0.869 0.847 0.829 0.856 0.861 0.881
0 0.936 0.949 0.722 0.710 0.480 0.480 0.909 0.910 0.910 0.905 0.513 0.916 0.954

Lena 5% 5 0.903 0.914 0.629 0.672 0.469 0.476 0.879 0.889 0.884 0.880 0.512 0.874 0.906
10 0.872 0.881 0.474 0.518 0.458 0.501 0.843 0.865 0.841 0.818 0.540 0.850 0.875
0 0.907 0.942 0.553 0.582 0.305 0.305 0.897 0.897 0.900 0.900 0.306 0.908 0.930

10% 5 0.883 0.906 0.510 0.563 0.302 0.304 0.872 0.882 0.878 0.872 0.308 0.867 0.894
10 0.851 0.871 0.428 0.471 0.308 0.329 0.837 0.859 0.833 0.806 0.335 0.842 0.861

0 0.928 0.924 0.912 0.920 0.928 0.928 0.886 0.886 0.886 0.875 0.938 0.916 0.959
0% 5 0.878 0.875 0.753 0.810 0.860 0.851 0.856 0.864 0.866 0.855 0.860 0.849 0.875

10 0.847 0.846 0.512 0.571 0.818 0.818 0.832 0.846 0.831 0.803 0.822 0.827 0.847
0 0.916 0.925 0.689 0.688 0.466 0.466 0.878 0.878 0.879 0.872 0.497 0.911 0.941

Peppers 5% 5 0.869 0.877 0.603 0.657 0.449 0.452 0.852 0.860 0.861 0.849 0.491 0.844 0.872
10 0.840 0.844 0.465 0.507 0.437 0.477 0.828 0.841 0.826 0.793 0.514 0.823 0.842
0 0.889 0.919 0.533 0.561 0.291 0.291 0.865 0.866 0.874 0.868 0.296 0.903 0.911

10% 5 0.852 0.872 0.493 0.547 0.290 0.290 0.844 0.852 0.855 0.843 0.288 0.837 0.862
10 0.821 0.836 0.419 0.462 0.288 0.307 0.821 0.834 0.820 0.782 0.313 0.816 0.831
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(e) σ = 20, p0 = 10%
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(f) σ = 30, p0 = 10%

Figure 12. Performance (in SSIM) of denoising for the BSD database [27]. In each subfigure, SSIM
indices of several approaches (see the legends) are plotted versus image IDs for the case when the input image is
corrupted by σ Gaussian noise and p0 impulsive noise. K-ALS has the best performance for most of the cases,
especially when the Gaussian noise is high.

Appendix F. Sensitivity of the K-ALS algorithm w.r.t. the dimension. In this section
we study the sensitivity of the K-ALS algorithm w.r.t. the choice of the dimension d′ in the
two imaging problems. Intuitively, we observe that the SVD of the clusters of natural image
patches can be well approximated with about rank 15, and slight overestimation cannot affect
the results. Thus we tested K-ALS(2p0) on 2 of the popular images (House and Lena) with
different values of d′ (from 10 to 40) for both denoising and blind inpainting. The results are
shown in Figure 16, where in each subfigure performances (in PSNR) of different scenarios
(with different p0 and σ) are displayed. By these experiments, we conclude that K-ALS is
robust to the choice of the dimension. It tends to improve with larger d′ when the image is
mildly corrupted; however, increasing d′ could be worse if the image were largely degraded.

Appendix G. Mathematical analysis of the ALS algorithm. We analyze the performance
of the ALS algorithm following the strategies of [38, 3].

G.1. Preliminaries.

G.1.1. Notation. Let 1m×n denote the m × n matrix whose elements are all equal to 1,
let I denote the identity matrix (whose dimension will be clear from the context), and let |A|0
denote the number of nonzero elements of the matrix A. We let A·j and Ai· denote the jth
column and ith row, respectively, of the matrix A.
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(f) σ = 10, p0 = 5%
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(g) σ = 0, p0 = 10%
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(h) σ = 5, p0 = 10%
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(i) σ = 10, p0 = 10%

Figure 13. Performance (in SSIM) of blind inpainting for the BSD database [27]. In each subfigure, SSIM
indices of several approaches (see the legends) are plotted versus image IDs for the case when the input image
is corrupted by σ Gaussian noise, p0 impulsive noise, and some scratches. K-ALS has the best performance for
most of the cases, especially when the Gaussian noise is high. For a few images the SSIM values of PCP(capped)
are high, but their perceptual quality is not as satisfying.

G.1.2. Point-to-set maps.
Definition G.1 (point-to-set map). Given two sets X ,Y, a point-to-set map Ω is a function

Ω: X → P(Y). The composition of two point-to-set maps Ω1: X → P(Y) and Ω2: Y → P(Z)
is defined by (Ω2 ◦ Ω1)(x) =

⋃
y∈Ω1(x)

Ω2(y).
Definition G.2 (closed map). A point-to-set map Ω is closed at x̂ ∈ X if, for any ŷ ∈ P(Y)

created by a sequence {xk} ⊂ X such that xk → x̂ and by a sequence yk ∈ Ω(xk) such that
yk → ŷ, ŷ ∈ Ω(x̂).

Definition G.3 (fixed point). A fixed point of the map Ω : X → P(X ) is a point x for which
{x} = Ω(x). A generalized fixed point of Ω is a point x for which x ∈ Ω(x).
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Figure 14. Errors of detecting the corrupted locations for the 5 popular images. In each subfigure, errors
of a specific corrupted scenario (see the subcaptions) are plotted versus the images. The number in parentheses
after K-ALS specifies the input estimating the portion of corruptions. Other methods use the best values from
a broad range of parameters; see section 5.3. For most of the cases, K-ALS outperforms the other algorithms.

G.1.3. Iterative algorithms. An iterative algorithm is a point-to-set map Ω : X → P(X ).
It generates a sequence of points via the rule xk+1 ∈ Ω(xk), where x0 is a given initial point.
Now, suppose that φ : X → R+ is a continuous, nonnegative function. An algorithm Ω is
monotonic w.r.t. φ whenever y ∈ Ω(x) implies that φ(y) ≤ φ(x). If, in addition, y ∈ Ω(x)
and φ(y) = φ(x) imply that y = x, then we say that the algorithm is strictly monotonic.

We review the following theorems on convergence of iterative algorithms.
Theorem G.4 (see Zangwill [47]). Let Ω be an algorithm that is monotonic w.r.t. φ. Given

an initial point x0, suppose that the algorithm generates a sequence {xk} that lies in a compact
set; then the sequence has at least one accumulation point x̂, and φ(x̂) = limφ(xk). Moreover,
if Ω is closed at x̂, then x̂ is a generalized fixed point of the algorithm.

Theorem G.5 (see Meyer [28]). Assume that the algorithm Ω is strictly monotonic w.r.t.
φ and that it generates a sequence {xk} which lies in a compact set. If Ω is closed at an
accumulation point x̂, then x̂ is a fixed point of Ω. Moreover, if X is normed, then ‖xk+1 −
xk‖ → 0. It follows that {xk} converges in norm to x̂ or that the accumulation points of {xk}
form a continuum.

G.1.4. Infimal maps. For φ : X × Y → R+, we define the infimal map My : X → P(Y)
by My(x) = argminy∈Y φ(x,y). We similarly define Mx : Y → P(X ).

We will decompose our algorithms by infimal maps and use the following auxiliary lemmas
in order to apply Theorems G.4 and G.5.
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(g) σ = 0, p0 = 10%
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(i) σ = 10, p0 = 10%

Figure 15. Errors of detecting the corrupted locations for the 5 popular images. In each subfigure, errors
of a specific corrupted scenario are plotted versus the images (the impulsive and Gaussian noise parameters
are in the subcaptions, and the scratch used throughout this paper is also added). The number in parentheses
after K-ALS specifies the input estimating the portion of corruptions. Other methods use the best values from
a broad range of parameters; see section 5.3. When the impulsive noise is present, K-ALS(p0) outperforms
other algorithms.

Theorem G.6 (see Dantzig, Folkman, and Shapiro [11]). If φ(x̂, ·) is continuous on Y, then
My is closed at x̂.

Theorem G.7 (see Fiorot and Huard [14]). If the infimal maps Mx and My are both single-
valued, then the algorithm Ω � Mx ◦My is strictly monotonic w.r.t. φ.

G.2. The ALS algorithm as a point-to-set map. In ALS the energy function J of (2.6)
serves as the function φ of section G.1.3. Clearly J is continuous on R

m×d × R
d×n × R

m×n.
Let F := {W : W ∈ {0, 1}m×n, |W|0 = �(1 − p)mn�}. We assume that d < min(m,n)
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(b) denoising, Lena
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Figure 16. The performance (in PSNR) of K-ALS( 2p0) versus different values of the dimension d′ for
House (left) and Lena (right) for denoising (top) and blind inpainting (bottom). The different curves in the
figures correspond to different values of σ and p0 as specified. The K-ALS( 2p0) is robust to the choice of d′,
and it favors small values for large corruptions and large values for small corruptions.

and that p is the estimated portion of corruptions. The ALS algorithm minimizes J among
(B,C,W) ∈ R

m×d×R
d×n×F . Defining MB(C,W) = argminB J , MC(B,W) = argminC J ,

and MW(B,C) = argminW∈F J , we rewrite the ALS algorithm as

(G.1) Ω = MW ◦ (MB ◦MC)
t,

where t is the number of iterations of the inner loop.

G.3. Conclusion of Theorem 4.1. At each step, the ALS algorithm is composed of 2t+1
infimal maps as in (G.1). For fixed B, the product map C �→ BC is continuous and J is
continuous w.r.t. BC. Thus, J(B, ·,W) is continuous for fixed B and W. As a result, The-
orem G.6 implies that both MB and MC are closed. Furthermore, MW is closed because F
is finite. Therefore, the ALS algorithm is closed. Lemmas G.8 and G.9, which are formu-
lated and proved below, imply that the ALS algorithm can be decomposed by single-valued
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infimal maps. Therefore, in view of Theorem G.7, the ALS algorithm is strictly monotonic.
Consequently, λ1‖Bt‖2F + λ2‖Ct‖2F ≤ J(Bt,Ct,Wt) < J(B0,C0,W0). Thus the iterates of
ALS are uniformly bounded. Combining these observations with Theorem G.5, we conclude
Theorem 4.1.

G.3.1. Establishing single values for MW.
Lemma G.8. If the elements of U are i.i.d. samples from a continuous distribution on

[0, 1], then the �p ·m · n�th and (�p ·m · n�+ 1)th greatest elements of

{|(BtCt)ij −Xij |2 + λ3U
2
ij}1≤i≤m

1≤j≤n

are different with probability 1.
Proof. Due to the independence and continuity of the distribution of Uij , we have

P{|(BtCt)ij −Xij|2 + λ3U
2
ij = |(BtCt)i′j′ −Xi′j′|2 + λ3U

2
i′j′}

= P{λ3(U
2
i′j′ −U2

ij) = |(BtCt)ij −Xij|2 − |(BtCt)i′j′ −Xi′j′ |2}
= 0.(G.2)

G.3.2. Establishing single values for MB and MC.
Lemma G.9. The infimal maps MB and MC derived from (2.6) are single-valued.
Proof. By the definition of infimal maps,

B̂ := MB(C,W) = argmin
B

‖(BC −X) ◦W‖2F + λ1‖B‖2F + λ2‖C‖2F .(G.3)

Let C̃(i) = C ◦ (1d×1Wi·) and X̃ = X ◦Wi·. Then

(G.4) B̂i· = X̃i·C̃T
(i)(C̃(i)C̃

T
(i) + λ1I)

−1,

where i = 1, . . . ,m. Similarly, letting Ĉ = MC, we have

(G.5) Ĉ·j = (B̃T
(j)B̃(j) + λ2I)

−1B̃T
(j)X̃·j,

where B̃(j) = B◦(W·j11×d) and j = 1, . . . , n. Then (G.4) and (G.5) complete the proof.

G.4. Conclusion of Theorem 4.2. The K-ALS algorithm can also be viewed as a point-
to-set map

(G.6) Ω = (MW ◦ (MB ◦MC)
t1)t2 ◦Mη,

where Mη = argminη J , i.e.,

(G.7) η(j) = argmin
k

min
c

‖(Bkc−X·j) ◦W·j‖22 + λ4V
2
kj,

where W = P[W1 . . .WK ] and P is a permutation matrix such that X = P[X1 . . .XK ].
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The proof of Theorem 4.2 is analogous to that of Theorem 4.1. It suffices to show that (G.7)
is single-valued. Because each element of V is i.i.d. sampled from a continuous distribution
on [0, 1], we have

P{min
c

‖(Bkc−X·j) ◦W·j‖22 + λ4V
2
kj = min

c
‖(Bk′c−X·j) ◦W·j‖22 + λ4V

2
k′j}

= P{λ4(V
2
k′j −V2

kj) = ‖(Bkc−X·j) ◦W·j‖22 − ‖(Bk′c−X·j) ◦W·j‖22}
= 0.(G.8)

Therefore, (G.7) is single-valued with probability 1 and the theorem is concluded.

G.5. Nonlocal medians. Many of the best performing image denoising methods (in the
additive Gaussian noise setting) are versions of the nonlocal means algorithm (NLM) [6].
A standard version takes in parameters m, ε, and l, and defines a weight matrix W with
elements:

Wij = h(i) e−d(xi ,xj)
2/ε2 ,

where xi and xj are patches of width
√
m about pixels i and j, respectively (represented as

vectors in R
m), h is 1 in a square neighborhood centered at i of sidelength l pixels and 0

elsewhere, and d denotes the Euclidean distance between the patches considered as vectors. A
normalized weight W̃ is formed by W̃ = D−1(W+WT ), where D is the diagonal matrix with
the row sums of W+WT on its diagonal. The noisy image is then smoothed by multiplying it
with W̃. The standard versions of NLM cannot handle impulsive noise or scratches, because
the patch distance is too sensitive to outliers or gross corruptions.

We propose and test two robust versions of NLM, which we refer to as the nonlocal
medians. First, we define two different similarity functions between patches xj and xi (of
width

√
m) as follows: (1) first apply a median filter to the entire image, and then use the

regular Euclidean distance (d2); (2) d̃r(xi − xj) :=
∑m

k=1 μk(xi(k) − xj(k))
2, where μk = 1

for the r coordinates of xi − xj with smallest absolute difference |xi − xj | and μk = 0 on the
other m− r coordinates.

To find the nonlocal medians, we define a square neighborhood of length l for the ith pixel
and denote the indices of the pixels in this neighborhood by Si. We compute the distances
(d2 after median filtering or d̃r) between xi and xj for all j ∈ Si. Then we form S̃i by keeping
only s patches corresponding to the smallest distances. Finally, an estimate for the intensity
value at pixel i is made by taking the median value among all intensities of pixels of patches
in S̃i. We refer to these two methods as NL-Median1 and NL-Median2, respectively.

In our experiments testing these two nonlocal median methods, we let m = 16, s = 12,
l = 7, and r = �(1 − 2p0)m�. We remark that the algorithm is not sensitive to the choice of
l as long as it is sufficiently large (but the algorithm slows as l gets larger). The parameter
r was set to be adaptive to p0. The other parameters were chosen by fine-tuning numerical
results.

We noticed that the application of SSMS after any of these methods does not in general
help with reducing Gaussian noise. In fact, it tended to make things worse for small (or
no) Gaussian noise and improved results for larger amounts, e.g., σ ≥ 20 (although this
improvement with known σ and p0 was still not better than K-ALS(p0)).
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