Group Testing:
How to find out what’s important in life

Mark Iwen
Institute for Mathematics and Its Applications

April 12, 2010
Outline

1. Group Testing - Overview
2. Group Testing - Example
3. Group Testing - Strongly Selective Matrices
4. Group Testing - More examples and Applications
5. Compressed Sensing - Escaping the Binary World
Group Testing - Overview

- Find a small number of interesting items hidden in a large set.
 - Syphilis Testing [Dorfman 1943]

- Industrial Experiment Design [Sobel and Groll, 1959]

Test Requirements...
- Test large arbitrary groups of objects
- Tests must be sensitive to defectives isolated with (many) other non-defective items
Group Testing - Overview

- Find a small number of interesting items hidden in a large set.
 - Syphilis Testing [Dorfman 1943]

- Industrial Experiment Design [Sobel and Groll, 1959]

Test Requirements...
- Test large arbitrary groups of objects
- Tests must be sensitive to defectives isolated with (many) other non-defective items
Group Testing - Overview

- Find a small number of interesting items hidden in a large set.
 - Syphilis Testing [Dorfman 1943]
 - Industrial Experiment Design [Sobel and Groll, 1959]

Test Requirements...
- Test large arbitrary groups of objects
- Tests must be sensitive to defectives isolated with (many) other non-defective items
Group Testing - Overview

- Find a small number of interesting items hidden in a large set.
 - Syphilis Testing [Dorfman 1943]
 - Industrial Experiment Design [Sobel and Groll, 1959]

- Test Requirements...
 - Test large arbitrary groups of objects
 - Tests must be sensitive to defectives isolated with (many) other non-defective items
Encode the problem in a **binary array**

\[[0, 1, 0, 0, 1, ...] \]

Find the nonzero entries by **testing subsets** of the array

- Boolean $K \times N$ measurement matrix M
- Boolean signal $a \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean ($+$ = OR, $*$ = AND)
- Identify the location of k ones using $y = Ma$ measurements
- How small can we make K and still recover a using y?
Group Testing - Overview

- Encode the problem in a binary array

- Find the nonzero entries by testing subsets of the array

- Boolean $K \times N$ measurement matrix M
- Boolean signal $a \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean ($+ = \text{OR}, \,* = \text{AND}$)
- Identify the location of k ones using $y = Ma$ measurements
- How small can we make K and still recover a using y?
Group Testing - Overview

- Encode the problem in a binary array

 ![Binary Array](image)

- Find the nonzero entries by testing subsets of the array

 ![Testing Subsets](image)

- Boolean $K \times N$ measurement matrix M

 - Boolean signal $a \in \{0, 1\}^N$ containing k ones

 - All arithmetic Boolean (+ = OR, * = AND)

 - Identify the location of k ones using $y = Ma$ measurements

 - How small can we make K and still recover a using y?
Group Testing - Overview

- Encode the problem in a binary array

- Find the nonzero entries by testing subsets of the array

- Boolean $K \times N$ measurement matrix M
- Boolean signal $a \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean ($+ = \text{OR}$, $\ast = \text{AND}$)
- Identify the location of k ones using $y = Ma$ measurements
- How small can we make K and still recover a using y?
Group Testing - Overview

- Encode the problem in a **binary array**
- Find the nonzero entries by **testing subsets** of the array

\[
\begin{align*}
&\text{Boolean } K \times N \text{ measurement matrix } M \\
&\text{Boolean signal } a \in \{0, 1\}^N \text{ containing } k \text{ ones} \\
&\text{All arithmetic Boolean (+ = OR, * = AND)} \\
&\text{Identify the location of } k \text{ ones using } y = Ma \text{ measurements} \\
&\text{How small can we make } K \text{ and still recover } a \text{ using } y?
\end{align*}
\]
Group Testing - Overview

- Encode the problem in a **binary array**
- Find the nonzero entries by **testing subsets** of the array

![Diagram](image)

- Boolean $K \times N$ measurement matrix \mathcal{M}
- Boolean signal $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean ($+ = \text{OR}, \times = \text{AND}$)
- Identify the location of k ones using $y = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover \mathbf{a} using y?
Group Testing - Overview

- Encode the problem in a **binary array**
- Find the nonzero entries by **testing subsets** of the array

- **Boolean** $K \times N$ measurement matrix \mathcal{M}
- **Boolean signal** $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean ($+ = \text{OR}$, $\ast = \text{AND}$)
- Identify the location of k ones using $y = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover \mathbf{a} using y?
Group Testing - Example

- \(\mathcal{M} \) is \(5 \times 30 \), \(\mathbf{a} \) contains 1 nonzero entry.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Matrix</th>
<th>Result</th>
</tr>
</thead>
</table>
| 0th | \[
0 1 0 1 0 1 0 1 0 \\
0 0 1 1 0 0 1 1 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
\]
| | \[
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
\]
| | \[
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
\] | \[
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
0 0 0 0 0 0 0 0 0 \\
\] |
Example

Group Testing - Example

- \mathcal{M} is 5×30, \mathbf{a} contains 1 nonzero entry.

\[
\begin{align*}
\text{0th bit} & \quad \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots \end{pmatrix} \\
\text{1st bit} & \quad \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & \ldots \end{pmatrix} \\
\text{2nd bit} & \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & \ldots \end{pmatrix} \\
\text{3rd bit} & \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \end{pmatrix} \\
\text{4th bit} & \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \end{pmatrix}
\end{align*}
\]
Recovery is simple: The result is the position of 1 in binary.

QUIZ: Can we do better if we let our measurement matrix contains arbitrarily large integers?
Group Testing - Example

\[
\begin{pmatrix}
0 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & \ldots \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
\ldots
\end{pmatrix}
=
\begin{pmatrix}
1 \\
1 \\
0 \\
0 \\
0 \\
\ldots
\end{pmatrix}
\]

\(\leftarrow 0^\text{th} \text{ bit } = 1\)
\(\leftarrow 1^\text{st} \text{ bit } = 1\)
\(\leftarrow 2^\text{nd} \text{ bit } = 0\)
\(\leftarrow 3^\text{rd} \text{ bit } = 0\)
\(\leftarrow 4^\text{th} \text{ bit } = 0\)

- **Recovery is simple:** The result is the position of 1 in binary.
- **QUIZ:** Can we do better if we let our measurement matrix contains arbitrarily large integers?
Group Testing - Example

\[
\begin{pmatrix}
0 & 1 & 0 & 1 & 0 & 1 & 0 & \cdots \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & \cdots \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
1 \\
\vdots
\end{pmatrix} =
\begin{pmatrix}
1 \\
1 \\
0 \\
0 \\
0 \\
\end{pmatrix}
\]

\(\leftarrow 0^{th} \text{ bit } = 1 \)
\(\leftarrow 1^{st} \text{ bit } = 1 \)
\(\leftarrow 2^{nd} \text{ bit } = 0 \)
\(\leftarrow 3^{rd} \text{ bit } = 0 \)
\(\leftarrow 4^{th} \text{ bit } = 0 \)

- **Recovery is simple:** The result is the position of 1 in binary.
- **QUIZ:** Can we do better if we let our measurement matrix contains arbitrarily large integers?
Example

Group Testing - Example

\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \ldots \\
\end{pmatrix} = 3
\]

- Recovery is simple: The result is the position of 1 in binary.
- QUIZ: Can we do better if we let our measurement matrix contains arbitrarily large integers?
- YES!!!
Measurement Matrix Construction

A binary matrix M is \textit{k}-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in M with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.
Measurement Matrix Construction

A binary matrix M is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in M with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.
Measurement Matrix Construction

A binary matrix M is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in M with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

$$
\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}
$$
Measurement Matrix Construction

A binary matrix \mathcal{M} is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in \mathcal{M} with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

\[
\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]
Measurement Matrix Construction

A binary matrix \mathcal{M} is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in \mathcal{M} with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

$$
\begin{array}{cccccccc}
H & H & H & H & H \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
$$
Measurement Matrix Construction

A binary matrix \mathcal{M} is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in \mathcal{M} with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

\[
\begin{array}{cccccccc}
H & H & H & H & H & H & H & H \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
* & * & * & * & * & * & * & * \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Measurement Matrix Construction

A binary matrix \mathcal{M} is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in \mathcal{M} with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

\[
\begin{array}{cccccccc}
H & H & H & H & H \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
* & * & * & * & * & * & * \\
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
\]
Measurement Matrix Construction

A binary matrix M is \textit{k-strongly selective} if for any column, x, and subset of columns containing at most k elements, X, there exists a row in M with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

- \textbf{Simple Recovery}: For each k-strongly selective test that evaluates to a 0 (i.e., All Healthy)...

Measurement Matrix Construction

A binary matrix \mathcal{M} is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in \mathcal{M} with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

- **Simple Recovery**: For each k-strongly selective test that evaluates to a 0 (i.e., All Healthy)...
- Mark all individuals tested in that test as Healthy.
Measurement Matrix Construction

A binary matrix \mathcal{M} is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in \mathcal{M} with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

- **Simple Recovery**: For each k-strongly selective test that evaluates to a 0 (i.e., All Healthy)...
- Mark all individuals tested in that test as Healthy.
- If there are at most k sick individuals, we will find them all!
Theorem 1

Let \(\mathbf{a} \in \{0, 1\}^N \) be a binary vector containing \(k \) nonzero entries. Furthermore, let \(\mathcal{M} \) be a \(k \)-strongly selective binary matrix. Then, the positions of all \(k \) nonzero entries in \(\mathbf{a} \) can be recovered using only the result of \(\mathcal{M} \mathbf{a} \).

Theorem 2

There exist explicitly constructible \((\min\{k^2 \cdot \log N, N\}) \times N \) \(k \)-strongly selective binary matrices. And, they are optimal in the number of rows.\(^a\)

\(^a\)See Porat and Rothschild’s paper “Explicit Non-Adaptive Combinatorial Group Testing Schemes”.

Theorem 1

Let \(a \in \{0, 1\}^N \) be a binary vector containing \(k \) nonzero entries. Furthermore, let \(M \) be a \(k \)-strongly selective binary matrix. Then, the positions of all \(k \) nonzero entries in \(a \) can be recovered using only the result of \(Ma \).

Theorem 2

There exist explicitly constructible \(\left(\min\{k^2 \cdot \log N, N\} \right) \times N \) \(k \)-strongly selective binary matrices. And, they are optimal in the number of rows.\(^a\)

\(^a\)See Porat and Rothschild’s paper “Explicit Non-Adaptive Combinatorial Group Testing Schemes”.
Group Testing - Another example

Error Detection

Suppose we want to transmit a binary vector $a \in \{0, 1\}^N$ through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both a and Ma
 - The receiver gets (or reads) $a' = a + \epsilon$
 - Check to see if $Ma = Ma'$
Error Detection

Suppose we want to transmit a binary vector \(a \in \{0, 1\}^N \) through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \(a \) and \(Ma \)
 - The receiver gets (or reads) \(a' = a + \epsilon \)
 - Check to see if \(Ma = Ma' \)
Error Detection

Suppose we want to transmit a binary vector \(a \in \{0, 1\}^N \) through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
 - A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \(a \) and \(Ma \)
 - The receiver gets (or reads) \(a' = a + \epsilon \)
 - Check to see if \(Ma = Ma' \)
Error Detection

Suppose we want to transmit a binary vector \(a \in \{0, 1\}^N \) through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \(a \) and \(Ma \)
 - The receiver gets (or reads) \(a' = a + \epsilon \)
 - Check to see if \(Ma = Ma' \)
Error Detection

Suppose we want to transmit a binary vector \(a \in \{0, 1\}^N \) through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \(a \) and \(Ma \)
 - The receiver gets (or reads) \(a' = a + \epsilon \)
 - Check to see if \(Ma = Ma' \)
Error Detection

Suppose we want to transmit a binary vector \(\mathbf{a} \in \{0, 1\}^N \) through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \(\mathbf{a} \) and \(\mathcal{M}\mathbf{a} \)
 - The receiver gets (or reads) \(\mathbf{a}' = \mathbf{a} + \epsilon \)
 - Check to see if \(\mathcal{M}\mathbf{a} = \mathcal{M}\mathbf{a}' \)
We have seen strongly selective matrices with $O(k^2 \log N)$ rows allow us to find all k nonzero entries in $a \in \{0, 1\}^N$ when we are allowed to compute ONE round of sampling.

What if we can adaptively sample $a \in \{0, 1\}^N$ several times?

ANSWER: We can use at most $\log(N)$ matrices with at most $2k + 1$ rows each! The total number of inner products is now only $O(k \log N)$!
We have seen strongly selective matrices with $O(k^2 \log N)$ rows allow us to find all k nonzero entries in $\mathbf{a} \in \{0, 1\}^N$ when we are allowed to compute ONE round of sampling.

What if we can adaptively sample $\mathbf{a} \in \{0, 1\}^N$ several times?

ANSWER: We can use at most $\log(N)$ matrices with at most $2k + 1$ rows each! The total number of inner products is now only $O(k \log N)$!
We have seen strongly selective matrices with \(O(k^2 \log N) \) rows allow us to find all \(k \) nonzero entries in \(\mathbf{a} \in \{0, 1\}^N \) when we are allowed to compute \text{ONE} \ round of sampling.

What if we can adaptively sample \(\mathbf{a} \in \{0, 1\}^N \) several times?

\textbf{ANSWER}: We can use at most \(\log(N) \) matrices with at most \(2k + 1 \) rows each! The total number of inner products is now only \(O(k \log N) \)!
Suppose \(a \in \mathbb{R}^N \) contains \(k \) nonzero entries all of which are positive. Can we still identify all \(k \) locations of the nonzero entries using the group testing methods we have seen?

YES!

HOMEWORK: Write out the step of the adaptive group testing example just discussed in class to find the two nonzero entries in the vector

\[
(0, 0, 0, 0, 0, .4, 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0).
\]

How many inner products does it take? How many inner products would it have taken to use a strongly selective binary matrix (see Theorem 2)? Which method requires fewer tests?
Group Testing - A Question

Suppose \(a \in \mathbb{R}^N \) contains \(k \) nonzero entries all of which are positive. Can we still identify all \(k \) locations of the nonzero entries using the group testing methods we have seen?

YES!

HOMEWORK: Write out the step of the adaptive group testing example just discussed in class to find the two nonzero entries in the vector

\[(0, 0, 0, 0, 0, .4, 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0).\]

How many inner products does it take? How many inner products would it have taken to use a strongly selective binary matrix (see Theorem 2)? Which method requires fewer tests?
Suppose $\mathbf{a} \in \mathbb{R}^N$ contains k nonzero entries all of which are positive. Can we still identify all k locations of the nonzero entries using the group testing methods we have seen?

YES!

HOMEWORK: Write out the step of the adaptive group testing example just discussed in class to find the two nonzero entries in the vector $(0, 0, 0, 0, 0, .4, 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0)$.

How many inner products does it take? How many inner products would it have taken to use a strongly selective binary matrix (see Theorem 2)? Which method requires fewer tests?
Compressed Sensing - Overview

- $K \times N$ measurement matrix M with complex entries
- An $N \times N$ complex matrix Ψ which induces sparsity in signals of interest.
- Signal $a \in \mathbb{C}^N$ which is sparse under Ψ (i.e., Ψa contains k nonzero entries).
- Identify the location of k ones using $y = M\Psi a$ measurements
- How small can we make K and still recover Ψa – and therefore a – using only y?
Compressed Sensing - Overview

- $K \times N$ measurement matrix \mathbf{M} with complex entries
- An $N \times N$ complex matrix Ψ which induces sparsity in signals of interest.
- Signal $\mathbf{a} \in \mathbb{C}^N$ which is sparse under Ψ (i.e., $\Psi \mathbf{a}$ contains k nonzero entries).
- Identify the location of k ones using $\mathbf{y} = \mathbf{M} \Psi \mathbf{a}$ measurements
- How small can we make K and still recover $\Psi \mathbf{a}$ – and therefore \mathbf{a} – using only \mathbf{y}?
Compressed Sensing - Overview

- $K \times N$ measurement matrix \mathcal{M} with complex entries
- An $N \times N$ complex matrix Ψ which induces sparsity in signals of interest.
- Signal $a \in \mathbb{C}^N$ which is sparse under Ψ (i.e., Ψa contains k nonzero entries).
- Identify the location of k ones using $y = \mathcal{M} \Psi a$ measurements
- How small can we make K and still recover Ψa – and therefore a – using only y?
Compressed Sensing - Overview

- $K \times N$ measurement matrix \mathcal{M} with complex entries
- An $N \times N$ complex matrix Ψ which induces sparsity in signals of interest.
- Signal $a \in \mathbb{C}^N$ which is sparse under Ψ (i.e., Ψa contains k nonzero entries).
- Identify the location of k ones using $y = \mathcal{M}\Psi a$ measurements
- How small can we make K and still recover Ψa – and therefore a – using only y?
Compressed Sensing - Overview

- $K \times N$ measurement matrix M with complex entries
- An $N \times N$ complex matrix Ψ which induces sparsity in signals of interest.
- Signal $a \in \mathbb{C}^N$ which is sparse under Ψ (i.e., Ψa contains k nonzero entries).
- Identify the location of k ones using $y = M \Psi a$ measurements.
- How small can we make K and still recover Ψa – and therefore a – using only y?
Compressed Sensing - Overview

- $K \times N$ measurement matrix \mathcal{M} with complex entries
- An $N \times N$ complex matrix Ψ which induces sparsity in signals of interest.
- Signal $\mathbf{a} \in \mathbb{C}^N$ which is sparse under Ψ (i.e., $\Psi \mathbf{a}$ contains k nonzero entries).
- Identify the location of k ones using $y = \mathcal{M} \Psi \mathbf{a}$ measurements
- How small can we make K and still recover $\Psi \mathbf{a}$ – and therefore \mathbf{a} – using only y?
Bit Testing - Group Testing for Compressed Sensing

- B is 4×6, a contains 1 nonzero entry.

$$
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
-3.5 \\
0 \\
0
\end{bmatrix}
$$

- Sparsity pattern gives nonzero location in binary.
- We get the entry value at least once.
- B is called a bit testing matrix.

IN THIS EXAMPLE WE SAVED 2 TESTS!
Bit Testing - Group Testing for Compressed Sensing

- B is 4×6, a contains 1 nonzero entry.

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
-3.5 \\
0 \\
0 \\
0
\end{pmatrix}
\]

- Sparsity pattern gives nonzero location in binary.
- We get the entry value at least once.
- B is called a bit testing matrix.

IN THIS EXAMPLE WE SAVED 2 TESTS!
• \mathcal{B} is 4×6, a contains 1 nonzero entry.

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
-3.5 \\
0 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
-3.5 \\
0 \\
-3.5 \\
0
\end{pmatrix}
\]

• Sparsity pattern gives nonzero location in binary.
• We get the entry value at least once.
• \mathcal{B} is called a bit testing matrix.

IN THIS EXAMPLE WE SAVED 2 TESTS!
Bit Testing - Group Testing for Compressed Sensing

- B is 4×6, a contains 1 nonzero entry.

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
-3.5 \\
0 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
-3.5 \\
0 \\
-3.5 \\
0
\end{pmatrix}
\]

- Sparsity pattern gives nonzero location in binary.
- We get the entry value at least once.
- B is called a bit testing matrix.

IN THIS EXAMPLE WE SAVED 2 TESTS!
Bit Testing - Group Testing for Compressed Sensing

- B is 4×6, a contains 1 nonzero entry.

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
-3.5 \\
0 \\
0 \\
0
\end{pmatrix} =
\begin{pmatrix}
-3.5 \\
0 \\
-3.5 \\
0
\end{pmatrix}
\]

- Sparsity pattern gives nonzero location in binary.
- We get the entry value at least once.
- B is called a bit testing matrix.

IN THIS EXAMPLE WE SAVED 2 TESTS!
Bit Testing - Group Testing for Compressed Sensing

- B is 4×6, a contains 1 nonzero entry.

$$
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
-3.5 \\
0 \\
-3.5 \\
0 \\
\end{pmatrix}
$$

- Sparsity pattern gives nonzero location in binary.
- We get the entry value at least once.
- B is called a bit testing matrix.

IN THIS EXAMPLE WE SAVED 2 TESTS!
Suppose \(\mathbf{a} \in \mathbb{C}^N \) contains \(k \) nonzero values.

- We will say that binary vector \(\mathbf{m} \in \{0, 1\}^N \) is a good mask for \(\mathbf{a} \) if the component-wise multiple of \(\mathbf{m} \) and \(\mathbf{a} \) contains only one isolated nonzero value.
- Anytime this happens we can identify the isolated value!
- There will be at least one row in \(\mathcal{M} \) that contains each nonzero value in \(\mathbf{a} \) isolated from all the others.
- Thus, \(\mathcal{M} \) will contain a good mask for every nonzero value!
Suppose $a \in \mathbb{C}^N$ contains k nonzero values.

We will say that binary vector $m \in \{0, 1\}^N$ is a good mask for a if the component-wise multiple of m and a contains only one isolated nonzero value.

Anytime this happens we can identify the isolated value!

There will be at least one row in M that contains each nonzero value in a isolated from all the others.

Thus, M will contain a good mask for every nonzero value!
Suppose $a \in \mathbb{C}^N$ contains k nonzero values.

We will say that binary vector $m \in \{0, 1\}^N$ is a good mask for a if the component-wise multiple of m and a contains only one isolated nonzero value.

Anytime this happens we can identify the isolated value!

Their will be at least one row in \mathcal{M} that contains each nonzero value in a isolated from all the others.

Thus, \mathcal{M} will contain a good mask for every nonzero value!
Compressed Sensing - More Than One Nonzero Value

Strongly Selective Matrices

A binary matrix M is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in M with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

- Suppose $a \in \mathbb{C}^N$ contains k nonzero values.
- We will say that binary vector $m \in \{0, 1\}^N$ is a good mask for a if the component-wise multiple of m and a contains only one isolated nonzero value.
- Anytime this happens we can identify the isolated value!
- Their will be at least one row in M that contains each nonzero value in a isolated from all the others.
- Thus, M will contain a good mask for every nonzero value!
Compressed Sensing - More Than One Nonzero Value

Strongly Selective Matrices
A binary matrix \mathcal{M} is k-strongly selective if for any column, x, and subset of columns containing at most k elements, X, there exists a row in \mathcal{M} with a 1 in column x and zeros in all of the other $X - \{x\}$ columns.

- Suppose $a \in \mathbb{C}^N$ contains k nonzero values.
- We will say that binary vector $m \in \{0, 1\}^N$ is a good mask for a if the component-wise multiple of m and a contains only one isolated nonzero value.
- Anytime this happens we can identify the isolated value!
- Their will be at least one row in \mathcal{M} that contains each nonzero value in a isolated from all the others.
- Thus, \mathcal{M} will contain a good mask for every nonzero value!
Theorem 3
Let \(\mathbf{a} \in \mathbb{C}^N \) be a complex valued vector containing \(k \) nonzero entries. Furthermore, let \(\mathcal{M} \) be a \(k \)-strongly selective binary matrix and \(\mathcal{B} \) be a bit testing matrix. Then, all \(k \) nonzero entries in \(\mathbf{a} \) can be recovered using only the result of \((\mathcal{M} \otimes \mathcal{B})\mathbf{a}\).

Theorem 4
We can explicitly construct binary measurement matrices, \(\mathcal{M} \otimes \mathcal{B} \), of size \(\left(\min \left\{ k^2 \cdot \left(\log_2 N + \log_2 N \right), N \right\} \right) \times N. \)
Compressed Sensing - More Than One Nonzero Value

Theorem 3

Let $a \in \mathbb{C}^N$ be a complex valued vector containing k nonzero entries. Furthermore, let M be a k-strongly selective binary matrix and B be a bit testing matrix. Then, all k nonzero entries in a can be recovered using only the result of $(M \star B)a$.

Theorem 4

We can explicitly construct binary measurement matrices, $M \otimes B$, of size

$$\left(\min \left\{ k^2 \cdot \left(\log_2 N + \log_2 N \right), N \right\} \right) \times N.$$