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1 Formulation and First Proof

The sampling theorem of bandlimited functions, which is often named after
Shannon, actually predates Shannon [2]. This is its classical formulation.

Theorem 1.1. If f ∈ L1(R) and f̂ , the Fourier transform of f , is supported
on the interval [−B,B], then

f(x) =
∑
n∈Z

f
( n

2B

)
sinc

(
2B
(
x− n

2B

))
, (1)

where the equality holds in the L2 sense, that is, the series in the RHS of (1)
converges to f in L2(R).

In other words, the theorem says that if an absolutely integrable function
contains no frequencies higher than B hertz, then it is completely deter-
mined by its samples at a uniform grid spaced at distances 1/(2B) apart via
formula (1).

1.1 Terminology and Clarifications

We say that a function f (with values in either R or C) is supported on a
set A if it is zero on the complement of this set. The support of f , which
we denote by supp(g), is the minimal closed set on which f is supported,
equivalently, it is the closure of the set on which f is non-zero. We note that
if f ∈ L1(R) is real-valued then the support of f̂ is symmetric around zero
(since the real part of f̂ is even and the imaginary part is odd). A function
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f ∈ L1(R) is bandlimited if there exists B ∈ R such that supp(f̂) ⊆ [−B,B].
We call B a band limit for f and Ω := 2B, the corresponding frequency
band. The minimal value of B (such that supp(f̂) ⊆ [−B,B]), that is, the
supremum of the absolute values of all frequencies of f , is called the Nyquist
frequency of f and its corresponding frequency band is called the Nyquist
rate. We denote the Nyquist frequency by BNyq, so that the Nyquist rate is
2BNyq.

Let us recall that the “general principle of the Fourier transform” states
that the decay of f̂ implies smoothness of f and vice versa. Band-limited
functions have the best decay one can wish for (their Fourier transforms are
zero outside an interval), they are also exceptionally smooth, that is, their
extension to the complex plan is analytic, in particular, they are C∞(R) func-
tions. This fact follows from a well-known theorem in analysis, the Payley-
Wiener Theorem [1]. We thus conclude that if f is a band-limited signal,
then its values {f(k/2B)}k∈Z are well-defined. 1

Having a bandlimit is natural for audio signals. Human voice only occu-
pies a small piece of the band of audible frequencies, typically between 300
Hz and 3.5 KHz (even though we can hear up to approximately 20 KHz). On
the other hand, this is a problematic requirement for images. Sharp edges in
natural images give rise to high frequencies and our visual system is often in-
tolerable to thresholding these frequencies. Nevertheless, Shannon sampling
theory still clarifies to some extent the distortion resulting from subsampling
images and how one can weaken this distortion by initial lowpass filtering.

1.2 First Proof of the Sampling Theorem

Since f ∈ L1(R) and supp(f̂) ⊆ [−B,B], then f̂ is a bounded function
supported on [−B,B], in particular, f̂ ∈ L2([−B,B]). We can thus expand
f̂ according to its following Fourier series:

f̂(ξ) =
∑
n∈Z

cne
2πinξ
2B , (2)

1If f is a rather arbitrary function in L1(R), then by changing its value at a point,
we obtain a function whose L1 distance from f is 0. That is, in general, the values
{f(k/2B)}k∈Z are not uniquely determined for f ∈ L1(R), however, sufficient smoothness,
e.g., continuity, implies their unique definition.
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where

cn =
1

2B

∫ B

−B
f̂(x)e

−2πinξ
2B dx =

1

2B

∫ ∞
−∞

f̂(x)e
−2πinξ

2B dx =
1

2B
f

(
−n
2B

)
. (3)

Therefore,

f̂(ξ) =
∑
n∈Z

1

2B
f

(
−n
2B

)
e

2πinξ
2B =

∑
n∈Z

1

2B
f
( n

2B

)
e

−2πinξ
2B . (4)

From (4) it is already clear that f can be completely recovered by the
values {f(n/(2B))}n∈Z. To conclude the recovery formula we invert f̂ as
follows:

f(x) =

∫ B

−B
f̂(ξ)e2πixξ dξ =

∑
n∈Z

f
( n

2B

) 1

2B

∫ B

−B
e2πiξ(x−

n
2B ) dξ (5)

=
∑
n∈Z

f
( n

2B

) 1

2B

e2πiξ(x−
n
2B )

2πi
(
x− n

2B

)∣∣∣∣∣
B

ξ=−B

=
∑
n∈Z

f
( n

2B

) 1

2πB
(
x− n

2B

) e2πiB(x− n
2B ) − e−2πiB(x− n

2B )

2i

=
∑
n∈Z

f
( n

2B

) sin
(
2πB

(
x− n

2B

))
2πB

(
x− n

2B

) =
∑
n∈Z

f
( n

2B

)
sinc

(
2B
(
x− n

2B

))
.

1.3 What Else Do We Want to Understand?

The above proof does not completely explain what may go wrong if we sample
according to a frequency B < BNyq; we refer to such sampling as undersam-
pling. It is also not easy to see possible improvement of the theory when
B > BNyq, that is, when oversampling. Nevertheless, if we try to adapt the
above proof to the case where B < BNyq, then we may need to periodize

f̂ with respect to the interval [−B,B] and then we can expand the peri-
odized function according to its Fourier series. Therefore, in §2 we discuss
the Fourier series expansions of such periodized functions. This is in fact the
well-known Poisson’s summation formula. In §3 we describe a second proof
for the Shannon’s sampling theorem, which is based on the Poisson’s sum-
mation formula. Following the ideas of this proof, §4 explains the distortion
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obtained by the recovery formula (1) when sampling with frequency rates
lower than Nyquist; it also clarifies how to improve such signal degradation
by initial lowpass filtering. Section 5 explains how to obtain better recov-
ery formulas when the sampling frequency is higher than Nyquist. At last,
we discuss in §6 further implications of these basic principles, in particular,
analytic interpretation of the Cooley-Tukey FFT.

2 Poisson’s Summation Formula

The following theorem is a formulation of Poisson summation formula with
additional frequency B (so that it fits well with the sampling formula). It uses
the function

∑∞
n=−∞ f(x + n/(2B)), which is a periodic function of period

1/(2B) (indeed, it is obtained by shifting the function f(x) at distances
n/(2B) for all n ∈ Z and adding up all this shifts). It is common to formulate
Poisson’s summation formula with only B = 1/2.

Theorem 2.1. If f ∈ L2(R), B > 0 and

∞∑
n=−∞

f
(
x+

n

2B

)
∈ L2

([
0,

1

2B

])
, (6)

then
∞∑

n=−∞

f
(
x+

n

2B

)
=

∞∑
n=−∞

2Bf̂(2Bn) e2πinx·2B. (7)

Proof. Since
∑∞

n=−∞ f
(
x+ n

2B

)
is in L2([0, 1/(2B)]), we can expand it by

its Fourier series as follows:

∞∑
n=−∞

f
(
x+

n

2B

)
=

∞∑
m=−∞

cm e
2πimx·2B, (8)

where

cm = 2B

∫ 1
2B

0

∞∑
n=−∞

f
(
x+

n

2B

)
e−2πimx·2B dx (9)

=
∞∑

n=−∞

2B

∫ 1
2B

0

f
(
x+

n

2B

)
e−2πimx·2B dx.
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Applying the change of variables y = x + n/(2B) into the RHS of (9) and
then using the fact that e−2πinm = 1, we conclude the theorem as follows

cm =
∞∑

n=−∞

2B

∫ n+1
2B

n
2B

f(y)e−2πimy·2B dy (10)

= 2B

∫ ∞
−∞

f(y)e−2πimy·2B = 2B f̂(2Bm).

We can reformulate Theorem 2.1 as follows:

Theorem 2.2. If f ∈ L2(R), B > 0 and
∑∞

n=−∞ f̂ (ξ + 2Bn) ∈ L2([0, 2B]),
then

∞∑
n=−∞

f̂ (ξ + 2Bn) =
1

2B

∞∑
n=−∞

f
( n

2B

)
e

−2πinξ
2B . (11)

Theorems 2.1 and 2.2 are clearly equivalent. For example, Theorem 2.2
follows from Theorem 2.1 by replacing f with f̂ (and thus f̂(ξ) with f(−x),

which equals
ˆ̂
f(x)) and replacing 2B with 1/2B as well as changing variables

in the RHS of (7) from n to −n. We use the period 2B for the function on
the LHS of (11) and 1/(2B) for the function on the LHS of (11) due to the
transformation of scale between the spatial and frequency domains (however,
the choice of scale can be arbitrary).

We note that Theorem 2.2 implies that given the samples {f(n/(2B))}n∈Z,
we can then recover the periodic summation of f̂ with period 2B, that is,
the function

P2B(f̂) :=
∞∑

n=−∞

f̂ (ξ + 2Bn) . (12)

This observation is the essence of our second proof of the sampling theorem.

3 A Second Proof of the Sampling Theorem

Since supp(f̂) ⊆ [−B,B], P2B(f̂) satisfies the identity

f̂(ξ) = χ[−B,B](ξ)P2B(f̂)(ξ) for all ξ 6= −B,B. (13)
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We remark that if f̂(B) 6= 0 (and consequently also f̂(−B) 6= 0), then (13)
does not hold for ξ = −B (and consequently also for ξ = B), but P2B(f̂)(ξ) =
f̂(B)+f̂(−B). Nevertheless, the LHS and RHS of (13) are equal in L2([−B,B]).

Combining (11)-(13), we conclude the following equality in L2:

f̂(ξ) =
∞∑

n=−∞

f
( n

2B

) 1

2B
χ[−B,B](ξ)e

−2πinξ
2B . (14)

We recall that 1
2B
χ[−B,B](ξ) is the Fourier transform of sinc(2Bx) and thus

1
2B
χ[−B,B](ξ)e

−2πinξ
2B is the Fourier transform of sinc

(
2B
(
x− n

2B

))
. At last,

we use this observation and invert the Fourier transforms in both sides of (14).
We consequently obtain the sampling formula (as an equality in L2):

f(x) =
∞∑

n=−∞

f
( n

2B

)
sinc

(
2B
(
x− n

2B

))
. (15)

4 On Aliasing and Anti-aliasing

Assume that f is a band-limited function in L1 and B is lower than its
Nyquist frequency. Suppose that we sample f at {n/2B}n∈Z and try to
recover f by its samples. It is interesting to know how well we can approxi-
mate f this way. The second proof of the sampling theorem provides a good
answer. Indeed, since P2B(f̂) is in L2 (this is because f̂ is bounded and
supported in [−B,B]), then we can replace (14) with

χ[−B,B](ξ)P2B(f̂)(ξ) =
∞∑

n=−∞

f
( n

2B

) 1

2B
χ[−B,B](ξ)e

−2πinξ
2B . (16)

Let g be the inverse Fourier transform of χ[−B,B](ξ)P2B(f̂)(ξ), then similarly
to deriving (15), we obtain that

g(x) =
∞∑

n=−∞

f
( n

2B

)
sinc

(
2B
(
x− n

2B

))
. (17)

That is, the sampling formula recovers g, which we refer to as an alias of f .

Example 4.1. We arbitrarily fix ε > 0 and B0 > 0 and let

f(x) = hε(x) 2B0 sinc(2B0x), (18)
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where supp(ĥε) = [−ε, ε] and hε(0) = 0 (equivalently
∫
ĥε(ξ) dξ = 0 and thus

ĥε oscillates). We note that

f̂(ξ) = ĥε(ξ) ∗ χ[−B0,B0](ξ) =

∫ B0

−B0

ĥε(ξ − η) dη =

∫ −ξ+B0

−ξ−B0

ĥε(ζ) dζ. (19)

In particular, f̂ is supported on the interval [−B0− ε, B0 + ε], that is, BNyq =
B0 + ε.

Assume that we want to sample f with frequency B0. Equation (19)
implies that

χ[−B0,B0](ξ)P2B0(f̂)(ξ) = χ[−B0,B0](ξ)

∫ ∞
−∞

ĥε(ζ) dζ = χ[−B0,B0]hε(0) = 0.

(20)
That is, the alias function g is the zero function. We also note that by the
definitions of f and hε, f(n/(2B0)) = 0 for any n ∈ Z. This observation
also confirms that the alias recovered by the sampling formula (i.e., g) is the
zero function.

Example 4.2. Let f(x) = sinc2(x) so that f̂(ξ) = (1 − |ξ|)χ[−1,1](ξ) (this
follows from the solution to the second part of problem 4 in Homework 3 and
the fact that f is real and even). The Nyquist frequency of f is BNyq = 1.
Assume that we sample f with frequency B = 0.5 and then try to recover f
by the sampling formula with this B. By direct calculation (or plotting all
intersecting shifts and adding them up) we obtain that

χ[−0.5,0.5](ξ)P1(f̂)(ξ) = χ[−0.5,0.5](ξ)(1− |ξ|+ |ξ|) = χ[−0.5,0.5](ξ). (21)

This is the Fourier transform of the alias g(x) = sinc(x). Clearly f and its
alias g are rather different (f = g2).

While we cannot recover f from its samples at the integer values, we can
get a better approximation to it. Indeed, let us zero out its Fourier transform
outside the interval [−0.5, 0.5]. That is, we define f̃ to be the function such

that ˆ̃f = f̂χ[−0.5,0.5]. We note that

ˆ̃f(ξ) = (1− |ξ|)χ[−0.5,0.5](ξ) =
1

2
χ[−0.5,0.5](ξ) +

1

2
(1− 2|ξ|)χ[−0.5,0.5](ξ)

=
1

2
χ[−0.5,0.5](ξ) +

1

4
· 2f̂(2ξ). (22)
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Therefore (applying the solutions of the first two parts of problem 4 in Home-
work 3)

f̃(x) =
1

2
sinc(x) +

1

4
sinc2(x/2) =

sinc(x)

2
+

sinc2(x)

2(1 + cos(x))
. (23)

The function f̃ is closer to f than the alias g. We clarify this claim in a
more general setting next.

We claim that f̃ of Example 4.2 is the best L2 approximation to f that
coincides with f at the undersampled values and reproduced by the sampling
formula. The requirement of reproducing by the sampling formula with spac-
ing 1/(2B) can be replaced with the requirement of band limit 2B. We even
claim the following more general statement.

Proposition 4.1. If f ∈ L1(R) and B > 0, then among all functions h ∈ L1

of band limit B the function f̃ , whose Fourier transform is ˆ̃f = f̂χ[−B,B],
obtains the shortest L2 distance to f .

Proof. If h ∈ L1 and its Fourier transform is supported in [−B,B], then

‖f − h‖22 = ‖f̂ − ĥ‖22 =

∫
ξ≤B
|f̂(ξ)− ĥ(ξ)|2 dξ +

∫
ξ>B

|f̂(ξ)|2 dξ. (24)

Since the second term in the RHS of (24) is independent of h, h = f̃ is a
minimizer of ‖f − h‖2.

The replacement of f with f̃ before subsampling is referred to as anti-
aliasing (we slightly generalize this definition below). That is, if we need to
sample a signal f at {n/2B}n∈Z, where B < BNyq, we can anti-alias it by
first zeroing out the Fourier transform of f outside the interval [−B,B] and
then subsample. In other words, we apply a lowpass filter before subsampling.
However, we may prefer a low-pass filter, which is more localized in the spatial
domain, equivalently, smoother in the Fourier domain. We will thus refer to
any such application of low-pass filter (with support of size comparable to
2B, but not smaller than 2B) before subsampling at equidistances 1/(2B)
as anti-aliasing.

Examples of aliasing and anti-aliasing for one-dimensional signals, images
and videos are further demonstrated in the class slides.
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5 Recovery Formulas for Oversampled Sig-

nals

The second proof of Theorem 1.1 also suggests better formulas for signal
recovery when f is oversampled. Indeed assume that B > BNyq, then (13)
can be modified as follows:

f̂(ξ) = 2Bĥ(ξ/B)P2B(f̂)(ξ) for all ξ ∈ R, (25)

where h(x) is any arbitrary L1 function such that ĥ(ξ/B) ∈ C∞(R), sup-
ported on [−B,B] and satisfying ĥ(ξ) = 1 for all ξ ∈ [−BNyq, BNyq]. Simi-
larly, to deriving (15), we conclude that

f(x) =
∞∑

n=−∞

f
( n

2B

)
h
(

2B
(
x− n

2B

))
. (26)

Since ĥ is a C∞ function, h is localized (it cannot have compact support
since ĥ is compactly supported, but it will decay fast).

6 Further Implications

The basic ideas of the Shannon sampling theorem and its proof will be funda-
mental in the next material of image pyramids, subband coding and wavelet
transforms. They are all based on subdividing the frequency band into low
and high frequencies (ideally in each part we have exactly half the original
band) and then subsampling the highpass and lowpass parts by a factor of 2
, so that the frequency rate and sampling rate in the subsampled signals are
the same as those of the original ones.

The Cooley-Tukey FFT algorithm can also be interpreted in view of the
sampling theorem. We recall that this algorithm recursively divides the DFT
signal into its odd and even parts, while proceeding from top to bottom. It
then continues from bottom to top recovering DFT of subsignals from the
DFTs of their odd and even parts. A DFT of a signal (or subsignal) of
length 2L, denoted by {X̂2L(n)}2L−1n=0 , is recovered by its even and odd parts
of length L, denoted by {X̂even

L (n)}L−1n=0 and {X̂even
L (n)}L−1n=0 , by applying the

following formulas for n = 0, . . . , L− 1:

X̂2L(n) = X̂even
L (n) + X̂odd

L (n)e
−2πin

2L , (27)
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and
X̂2L(n+ L) = X̂even

L (n) + X̂odd
L (n)e

−2πi(n+L)
2L . (28)

That is, the two subsampled signals are combined, while shifting the frequen-
cies of the odd signals.
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