You have 10 minutes for the following problems. Calculators should NOT be useful. Please print your name and section number at the top-right corner before you start.

Problem 1 (10 points) Let Ω be the solid body bounded by $x^2 + y^2 + z^2 = 1$ and $y^2 = x^2 + z^2$. Find the volume of Ω.

Clearly, we should use spherical coordinates. The zenith direction is y.

\[x = \rho \sin \phi \cos \theta \]
\[y = \rho \cos \phi \]
\[z = \rho \sin \phi \sin \theta \]

We clearly have $\rho \in [0, 1]$, $\theta \in [0, 2\pi]$. We still need to find the range of ϕ.

As always, we take a y-r section:

The maximum of ϕ is given by the intersection of the two surfaces.

\[y^2 = x^2 + z^2 \Rightarrow \rho^2 \cos^2 \phi = \rho^2 \sin^2 \phi \Rightarrow \tan \theta = 1 \]

\[\theta = \frac{\pi}{4} \]

\[\phi = \frac{\pi}{2} \]

\[\phi = 0 \]

\[\phi = \frac{\pi}{4} \]

Therefore, ϕ ranges from 0 to $\frac{\pi}{4}$.

\[V = \int_0^{2\pi} \int_0^{\pi/4} \int_0^1 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \]

\[= \frac{2\pi}{3} \int_0^{\pi/4} \sin \phi \, d\phi = \frac{2\pi}{3} \left[-\cos \phi \right]_0^{\pi/4} \]

\[= \frac{2\pi}{3} \left(1 - \frac{\sqrt{2}}{2} \right) \]