MATH 8302 HW 1 Solutions and comments

February 24, 2020

Questions $3,4,9$ are not graded, so solutions are given. For graded questions, only comments are given. Questions are ordered as on the website.

Question 1: Let $p_{s}, p_{n}: S^{d} \rightarrow \mathbb{R}^{d}$ be the stereographic projections. One need to show $p_{s} \circ p_{n}^{-1}$ and $p_{n} \circ p_{s}^{-1}$ are smooth and it is true because the domains of these two functions don't include $0 \in \mathbb{R}^{d}$. Also, one cannot say p_{s} or p_{n} is differentiable since we have not established S^{d} to be a differentiable manifold yet.

Question 2: $\mathcal{F} \neq \mathcal{F}_{1}$ because $\phi: t \mapsto \sqrt[3]{t}$ is not in \mathcal{F}. But ϕ defines a diffeomorphism between the two.

Question 3: (a) For $(x, v) \in \mathbb{R}^{2 d}$, we have $\tilde{\psi} \circ \tilde{\varphi}^{-1}(x, v)=\left(\psi \circ \varphi^{-1}(x), d \psi \circ d \varphi^{-1}(v)\right)$ is smooth.
(b) The collection is clearly a cover. To show it is a basis, let W_{1}, W_{2} be open subset of $\mathbb{R}^{2 d}$ and $(U, \varphi),(V, \psi)$ two coordinate charts such that $\tilde{\varphi}^{-1}\left(W_{1}\right) \cap \tilde{\psi}^{-1}\left(W_{2}\right)$ is nonempty. Take $v \in \tilde{\varphi}^{-1}\left(W_{1}\right) \cap \tilde{\psi}^{-1}\left(W_{2}\right)$. Then there exists chart (A, ϕ) such that $\pi(v) \in A \subset U \cap V$ and open set $W \subset \mathbb{R}^{2 d}$ such that $v \in \tilde{\phi}^{-1}(W) \subset \tilde{\varphi}^{-1}\left(W_{1}\right) \cap \tilde{\psi}^{-1}\left(W_{2}\right)$.
(c) We already know $\tilde{\psi} \circ \tilde{\varphi}^{-1}$ is smooth. $\left\{\pi^{-1}(U)\right\}$ is obviously an open cover.

Question 4: (a) Take the product chart $(U \times V, \psi \times \varphi)$ on $M \times N$ and a chart (W, f) on \tilde{M}. Clearly $(\psi \times \varphi) \circ \alpha \circ f^{-1}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m+n}$ is smooth if and only if $\psi \circ \alpha \circ f^{-1}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ and $\varphi \circ \alpha \circ f^{-1}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ are smooth.
(b) It is easy to see $v \rightarrow\left(d \pi_{1}(v), d \pi_{2}(v)\right)$ is a linear map between two linear spaces of the same dimension. Suppose $d \pi_{1}(v)=d \pi_{2}(v)=0$. Let $\gamma:(-\varepsilon, \varepsilon) \rightarrow M \times N$ be an integral curve with $\dot{\gamma}(0)=v$. Note that $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ and thus $v=\dot{\gamma}=\left(\dot{\gamma}_{1}, \dot{\gamma}_{2}\right)=\left(d \pi_{1}(v), d \pi_{2}(v)\right)=0$. So this map is injective and thus isomorphism.
(d) Let $\gamma, \gamma_{1}, \gamma_{2}$ be as in (b), but at point $\left(m_{0}, n_{0}\right)$. Then $v(f)=\left.\frac{d}{d t}\right|_{t=0} f(\gamma(t))=$ $\frac{\partial f}{\partial m}\left(m_{0}, n_{0}\right) \frac{d \gamma_{1}}{d t}(0)+\frac{\partial f}{\partial n}\left(m_{0}, n_{0}\right) \frac{d \gamma_{2}}{d t}(0)$. Let $f_{1}=f \circ i_{n_{0}} \in C^{\infty}(M)$ and $f_{2}=f \circ i_{m_{0}} \in$
$C^{\infty}(N)$. Then $v_{1}\left(f_{1}\right)+v_{2}\left(f_{2}\right)=\left.\frac{d}{d t}\right|_{t=0} f_{1}\left(\gamma_{1}(t)\right)+\left.\frac{d}{d t}\right|_{t=0} f_{2}\left(\gamma_{2}(t)\right)=\frac{\partial f}{\partial m}\left(m_{0}, n_{0}\right) \frac{d \gamma_{1}}{d t}(0)+$ $\frac{\partial f}{\partial n}\left(m_{0}, n_{0}\right) \frac{d \gamma_{2}}{d t}(0)$.

Question 5: For diffeomorphism $f: M \rightarrow N$, the differential $d f_{m}$ is isomorphism between tangent spaces. So M, N must have equal dimension.

Question 6: Common mistake is to define $f: T S^{1} \rightarrow S^{1} \times \mathbb{R}$ by $\left(x, y \frac{d}{d x}\right) \mapsto(x, y)$, since we don't have a global coordinate on $T S^{1}$. One need to take the two charts U_{1}, U_{2} on S^{1} and define f on the two trivializations $U_{i} \times \mathbb{R}$. Note then f would be $\left(x, y \frac{d}{d x}\right) \mapsto(x, y)$ and $\left(x, y \frac{d}{d x}\right) \mapsto(x,-y)$ respectively on the two charts so that they can be patched together.

The proof using $T S^{1} \subset \mathbb{R}^{2} \times \mathbb{R}^{2}$ is a bit cheating but is also accepted.
Question 7 and 10: Practically the same question. If f is everywhere non-singular, then it is local diffeomorphism and thus an open map. So the image of f has to be open and compact, contradicting Heine-Borel.

Question 8: $\quad f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$ would work.
Question 9: Compute the differential $d f=\left(\begin{array}{ll}3 x^{2}+y & x+3 y^{2}\end{array}\right)$
Note that it is singular at $(0,0)$ and $(-1 / 3,-1 / 3)$. So not a submanifold there.
For $p=(1 / 3,1 / 3)$, we have $d f$ nonsingular. Also $f(1 / 3,1 / 3) \neq f(0,0) \neq f(-1 / 3,-1 / 3)$, so $d f$ is nonsingular at every point of $f^{-1}(f(p))$. So a submanifold.

