Questions 2,9 are not graded, so solutions are given. For graded questions, only comments are given. Questions are ordered as on the website.

Question 1: Need to check \(d\psi \) is surjective. Locally one has \(d\psi(A) = \lim_{h \to 0} \frac{\psi(I + hA) - \psi(I)}{h} = A + A^t \). So \(\dim \text{Im}(d\psi) = d^2 - \dim \text{Ker}(d\psi) = \frac{d(d+1)}{2} \) is surjective.

Question 2: (a) Locally write \(X = \sum a_i \partial x_i \) and \(Y = \sum b_i \partial x_i \), where \(a_i, b_i \) are smooth functions. Then \([X,Y] = \sum_i \sum_j (a_i \frac{\partial b_j}{\partial x_i} - b_i \frac{\partial a_j}{\partial x_i}) \partial x_j \), which is a smooth vector field.

(b) One can check in local coordinates. Coordinate freely, one can write \([fX,gY] = (fX)(gY) - (gY)(fX) = f((Xg)Y + gXY) - g((Yf)X + fYX) = fg[X,Y] + f(Xg)Y - g(Yf)X \).

(c)(d) Trivial computation.

Question 3: Easy computation.

Question 4: Because of compactness, we can get a lower bound \(\varepsilon \) such that locally at any point, an integral curve exists in time \((-\varepsilon, \varepsilon)\). So suppose a maximal integral curve at \(p \) is \(\gamma : (a,b) \to M \), one can extend the curve at \(\gamma(b - \varepsilon/4) \) to \(\tilde{\gamma} : (a, b + \varepsilon/2) \), contradicting the maximality.

Question 5: For \(f : \mathbb{R}^2 \to \mathbb{R} \), \(df \) is either identically 0 or rank 1. In the former case, \(f \) is constant map. In the latter case, \(f \) must have 1 dimensional preimage.

Question 6: Easy computation.

Question 7: Take \(\text{det} : \mathbb{R}^4 \setminus \{0\} \to \mathbb{R} \) to be the determinant. Then one can show \(\text{det} \) is submersion and \(\text{det}^{-1}(0) \) is exactly the space of rank 1 matrices.

Question 8: It’s easy to show it is immersion and injective. To show density, one can show \(\text{Im}(f) \cap \{x\} \times S^1 \) is dense for all \(x \). However, this is not an embedding because for any open \(U \) in \(S^1 \times S^1 \), \(\text{Im}(f) \cap U \) is not path connected. So \(f \) is not homeomorphic onto the image.
Question 9: For $v \in P_m$, let γ be an integral curve in a neighborhood of m in P such that $\gamma(0) = m$ and $\dot{\gamma}(0) = v$. Then we have $d\psi(di(v)) = \frac{d}{dt} \bigg|_{t=0} (\psi(i(\gamma(t)))) = 0$ because $\psi \circ i \circ \gamma$ is a constant map.