(1) Determine whether the sequence \(\{ s_n \} \) is convergent or divergent. If convergent, find the limit. (You do not need to prove the limit.)

(a) \(s_n = \frac{2n^3 - 79n^2 + 42}{5n^{5/2} + 1} \)

(b) \(s_n = \frac{2n^3 - 79n^2 + 42}{5n^3 + 1} \)

(c) \(s_n = \frac{2n^3 - 79n^2 + 42}{5n^4 - 100n^3 + 1} \)

(2) For each sequence \(\{ s_n \} \), reason informally to determine whether or not it is convergent, and if convergent to find its limit \(L \). If your informal reasoning indicates that the limit should be \(L \), use the definition of limit of a sequence to show that in fact, \(\lim s_n = L \). If your informal reasoning suggests that the sequence is divergent, show this by using the definition of limit or a theorem (or the contrapositive of a theorem).

(a) \(s_n = \frac{10000n - 1}{n^2 + 500} \)
(b) \[s_n = \frac{2n^3 - 5n + 7}{5n^4 + 4} \]

(3) Is the following statement true or false? If it is true, prove it. If it is false, provide a counterexample: If \(|s_n|\) is convergent, then \(s_n\) is convergent.

(4) Suppose \(\{a_n\}\) is divergent, and \(\{b_n\}\) is convergent. Is \(\left\{\frac{a_n}{b_n}\right\}\) convergent or divergent? If it is convergent, give a proof. If it is divergent, provide a counterexample.