(1) Prove (not necessarily using the definition of limit) the limits of the following sequences:

(a) \(a_n = e^{-n} \sin(n) \)

(b) Suppose \(x > 0 \). \(a_n = \cos(\pi x^{1/n}) \)

(2) (This problem courtesy of one of your classmates): If \(a_n \) is a bounded (not necessarily convergent) sequence and \(b_n \to 0 \), then does \(\{a_n b_n\} \) converge or diverge? If it converges, find its limit. In either case, prove it.
(3) Let

\[f = \begin{cases}
 1, & \text{if } x > 0; \\
 0, & \text{if } x \leq 0,
\end{cases} \]

and

\[s_n = \frac{1}{n} \]

(a) Write out the first few terms of \(\{f(s_n)\} \)
(b) What is \(\lim f(s_n) \)?
(c) What is \(\lim s_n \)? What is \(f(\lim s_n) \)?
(d) Why doesn’t this contradict our theorem about sequences and continuous functions?