(1) Find the maximum and minimum values of the function $f(x, y) = 4x + 6y$ on the closed disk centered about the origin with radius $\sqrt{13}$.

minimum = -26
maximum = 26

(2) $\int_1^3 \int_0^1 (1 + 4xy)\,dx\,dy = 10$

(3) $\int_1^4 \int_0^1 (2x + y)^3\,dx\,dy = \frac{1}{180}(6^{10} - 4^{10} - 3^{10} + 1)$

(4) $\int_{\ln 2}^{\ln 5} \int_{\ln 2}^{\ln 5} e^{2x-y} \,dx\,dy$

\[
\int_{\ln 2}^{\ln 5} \int_{\ln 2}^{\ln 5} e^{2x-y} \,dx\,dy = \int_{\ln 2}^{\ln 5} \left[\frac{1}{2} e^{2x - y} \right]_{x=0}^{x=\ln 5} dy
\]
\[
= \frac{1}{2} \int_{\ln 2}^{\ln 5} (e^{2\ln 5} - e^{-y}) dy
\]
\[
= \frac{1}{2} \int_{\ln 2}^{\ln 5} (e^{2\ln 5} e^{-y} - e^{-y}) dy
\]
\[
= \frac{1}{2} \int_{\ln 2}^{\ln 5} e^{2\ln 5 - y} - e^{-y} dy
\]
\[
= \frac{1}{2} \int_{\ln 2}^{\ln 5} (25e^{-y} - e^{-y}) dy
\]
\[
= \frac{1}{2} \int_{\ln 2}^{\ln 5} 24e^{-y} dy
\]
\[
= \int_{\ln 2}^{\ln 5} 12e^{-y} dy
\]
\[
= \left[-12e^{-y} \right]_{y=\ln 2}^{y=\ln 5}
\]
\[
= -12e^{-\ln 2} + 12
\]
\[
= -12e^{-\ln(1/2)} + 12
\]
\[
= -12 \left(\frac{1}{2} \right) + 12
\]
\[
= 6
\]

(5) $\int_R \cos(x + 2y)\,dA, \quad R = \{(x, y) | 0 \leq x \leq \pi, 0 \leq y \leq \pi/2\}$

-2
(6) \[\int \int_R xy e^{x^2y} \, dA, \quad R = [0, 1] \times [0, 2] \]

To illustrate that a problem can become easier by flipping the order of integration, we will attempt to solve the problem in two ways.

\[\int \int_R xy e^{x^2y} \, dA = \int_0^1 \int_0^2 xy e^{x^2y} \, dy \, dx \]

Notice that this way involves integration by parts. I don’t feel like doing that so let’s see what happens when we flip the limits of integration:

\[\int \int_R xy e^{x^2y} \, dA = \int_0^2 \int_0^1 xy e^{x^2y} \, dx \, dy \]

\[= \int_0^2 \left[\frac{e^{x^2y}}{2} \right]_{x=0}^{x=1} \, dy \]

\[= \frac{1}{2} \int_0^2 (e^y - 1) \, dy \]

\[= \frac{1}{2} \left[e^y - y \right]_{y=0}^{y=2} \]

\[= \frac{1}{2} \left[e^2 - 2 - (1 - 0) \right] \]

\[= \frac{e^2 - 3}{2} \]

Wow! That way was much easier. What a great problem!

(7) Find the volume of the solid that lies under the plane \(3x + 2y + z = 12 \) and above the rectangle \(R = \{(x, y) | 0 \leq x \leq 1, -2 \leq y \leq 3\} \)

Notice that we can rewrite the equation of the plane as \(z = 12 - 3x - 2y \). So define the function \(f(x, y) = 12 - 3x - 2y \). It is easy to see that \(f \) is positive on \(R \). So the volume of the solid that lies under the plane is equal to the double integral of \(f \) over \(R \). That is

\[V = \int \int_R f(x, y) = \frac{95}{2} \]