On non-uniformity in threshold schemes

Joan Daemen

STMicroelectronics
Radboud University

SPACE 2016
Hyderabad, December 17, 2016
Outline

1. The original motivation
2. Distributions, spectrum and collision probability
3. Mappings and correlation matrices
4. In the setting of a shared implementation
5. Achieving uniformity
Protection of KECCAK against first-order DPA

- **KEYAK, KETJE and keyed KECCAK in the field**
 - Banking cards, ID, public transport, secure elements, ...
 - Protection against side-channels is relevant: DPA, DEMA

- **Threshold scheme** [Nikova, Rijmen, Schläffer]
 - Represent (native) state bits as n shares
 - For KECCAK: 3 shares
 - Incompleteness: each combinatorial block only takes 2 shares
 - If input uniformly shared, computation uncorrelated to native state
 - *Provably secure* against 1st order DPA/DEMA
A 3-share threshold implementation

Uniformly shared variable x:
- All (x_a, x_b, x_c) with $x_a + x_b + x_c = x$ equiprobable
- Equivalently: $\forall x : (x_b, x_c)$ uniform
- (x_b, x_c): randomization vector

(f_a, f_b, f_c) is sharing of f

Given x, mapping from (x_b, x_c) to (y_b, y_c) is deterministic:

$$(y_b, y_c) = (f_b(x + x_b + x_c, x_c), f_c(x + x_b + x_c, x_b))$$
A 3-share threshold implementation

Uniformly shared variable x:
- All (x_a, x_b, x_c) with $x_a + x_b + x_c = x$ equiprobable
- Equivalently: $\forall x : (x_b, x_c)$ uniform
- (x_b, x_c): randomization vector

(f_a, f_b, f_c) is sharing of f

Given x, mapping from (x_b, x_c) to (y_b, y_c) is deterministic:

$$(y_b, y_c) = (f_b(x + x_b + x_c, x_c), f_c(x + x_b + x_c, x_b))$$
A 3-share threshold implementation

- Uniformly shared variable x:
 - All (x_a, x_b, x_c) with $x_a + x_b + x_c = x$ equiprobable
 - Equivalently: $\forall x : (x_b, x_c)$ uniform
 - (x_b, x_c): randomization vector

- (f_a, f_b, f_c) is sharing of f

Given x, mapping from (x_b, x_c) to (y_b, y_c) is deterministic:

$$(y_b, y_c) = (f_b(x + x_b + x_c, x_c), f_c(x + x_b + x_c, x_b))$$
A 3-share threshold implementation

Uniformly shared variable x:
- All (x_a, x_b, x_c) with $x_a + x_b + x_c = x$ equiprobable
- Equivalently: $\forall x : (x_b, x_c)$ uniform
- (x_b, x_c): randomization vector

(f_a, f_b, f_c) is sharing of f

Given x, mapping from (x_b, x_c) to (y_b, y_c) is deterministic:

$$(y_b, y_c) = (f_b(x + x_b + x_c, x_c), f_c(x + x_b + x_c, x_b))$$
Relevance of uniformity of a sharing

Sharing \((f_a, f_b, f_c)\) is uniform if

- \(\forall x: \text{uniform} (x_b, x_c) \implies \text{uniform} (y_b, y_c)\)
- if \((f_a, f_b, f_c)\) is a permutation, the sharing is uniform
Relevance of uniformity of a sharing

Sharing \((f_a, f_b, f_c)\) is uniform if
- \(\forall x: \text{uniform } (x_b, x_c) \implies \text{uniform } (y_b, y_c)\)
- if \((f_a, f_b, f_c)\) is a permutation, the sharing is uniform
KECCAK structure: sponge and duplex

- f: iterative permutation
- Keyed mode: part of input is secret key
- Security relies on secrecy of inner state
- Try extracting it with side-channel attacks
KECCAK structure: sponge and duplex

- f: iterative permutation
- Keyed mode: part of input is secret key
- Security relies on secrecy of inner state
- Try extracting it with side-channel attacks
The KECCAK-f round function

\[R = \iota \circ \chi \circ \pi \circ \rho \circ \theta \]

Linear part \(\lambda \) followed by non-linear part \(\chi \)

- \(\lambda = \pi \circ \rho \circ \theta \): mixing followed by bit transposition
- \(\chi \): operates on 5-bit rows: \(y_i = x_i + (x_{i+1} + 1)x_{i+2} \)
Randomness initialization:
- registers a and b: random bits
- register $c = a + b$
- once per device power-up

Resetting the native state to 0
- reset register $c = 0$
- fill register with $c = a + b$
- once per keyed KECCAK instance

Input absorbed in single share
The sharing of χ

The nonlinear step χ (cyclically on 5-bit rows):

$$X_i \leftarrow \chi_i(x) \triangleq x_i + (x_{i+1} + 1)x_{i+2}$$

Sharing χ' [BDPV SHA-3 2011]:

$$A_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2} + b_{i+1}c_{i+2} + b_{i+2}c_{i+1}$$
$$B_i \leftarrow c_i + (c_{i+1} + 1)c_{i+2} + c_{i+1}a_{i+2} + c_{i+2}a_{i+1}$$
$$C_i \leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + a_{i+2}b_{i+1}$$

χ' is not a permutation and not uniform!

In general, finding efficient uniform threshold sharings is a popular research subject.
The sharing of χ

The nonlinear step χ (cyclically on 5-bit rows):

$$X_i \leftarrow \chi_i(x) \triangleq x_i + (x_{i+1} + 1)x_{i+2}$$

Sharing χ' [BDPV SHA-3 2011]:

$$A_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2} + b_{i+1}c_{i+2} + b_{i+2}c_{i+1}$$

$$B_i \leftarrow c_i + (c_{i+1} + 1)c_{i+2} + c_{i+1}a_{i+2} + c_{i+2}a_{i+1}$$

$$C_i \leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + a_{i+2}b_{i+1}$$

χ' is not a permutation and not uniform!

In general, finding efficient uniform threshold sharings is a popular research subject.
The sharing of χ

The nonlinear step χ (cyclically on 5-bit rows):

$$X_i \leftarrow \chi_i(x) \triangleq x_i + (x_{i+1} + 1)x_{i+2}$$

Sharing χ' [BDPV SHA-3 2011]:

$$A_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2} + b_{i+1}c_{i+2} + b_{i+2}c_{i+1}$$
$$B_i \leftarrow c_i + (c_{i+1} + 1)c_{i+2} + c_{i+1}a_{i+2} + c_{i+2}a_{i+1}$$
$$C_i \leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + a_{i+2}b_{i+1}$$

χ' is not a permutation and not uniform!

In general, finding efficient uniform threshold sharings is a popular research subject
Non-uniformity of the χ' sharing

Two concerns:
- long-term: randomness in randomization vector evaporates
- short-term: input to next round is not uniform

First attempt: restore uniformity [BDNNRV Cardis ’13]
- 3-share uniform threshold scheme for χ seems not to exist
- increase number of shares to 4
- inject additional randomness: 4 bits per KECCAK-f round

Second attempt: measure damage [JDA presentations 2015]
- see what can be done
- at the expense of giving up on some provable security
- result: cheap trick (almost) removing non-uniformity

Third attempt [JDA, IACR ePrint (Nov.) 2016/1061]
- tweaking the trick, effectively achieving uniformity
- uniformly share any balanced degree-d S-box in $d + 1$ shares
Non-uniformity of the \(\chi' \) sharing

- **Two concerns:**
 - **long-term:** randomness in randomization vector evaporates
 - **short-term:** input to next round is not uniform

- **First attempt:** restore uniformity [BDNNRV Cardis ’13]
 - 3-share uniform threshold scheme for \(\chi \) seems not to exist
 - increase number of shares to 4
 - inject additional randomness: 4 bits per KECCAK-f round

- **Second attempt:** measure damage [JDA presentations 2015]
 - see what can be done
 - at the expense of giving up on some **provable security**
 - result: cheap trick (almost) removing non-uniformity

- **Third attempt** [JDA, IACR ePrint (Nov.) 2016/1061]
 - tweaking the trick, effectively achieving uniformity
 - uniformly share any balanced degree-\(d \) S-box in \(d + 1 \) shares
Non-uniformity of the χ' sharing

- Two concerns:
 - long-term: randomness in randomization vector evaporates
 - short-term: input to next round is not uniform

- First attempt: restore uniformity [BDNNRV Cardis ’13]
 - 3-share uniform threshold scheme for χ seems not to exist
 - increase number of shares to 4
 - inject additional randomness: 4 bits per KECCAK-f round

- Second attempt: measure damage [JDA presentations 2015]
 - see what can be done
 - at the expense of giving up on some provable security
 - result: cheap trick (almost) removing non-uniformity

- Third attempt [JDA, IACR ePrint (Nov.) 2016/1061]
 - tweaking the trick, effectively achieving uniformity
 - uniformly share any balanced degree-d S-box in $d + 1$ shares
Non-uniformity of the χ' sharing

- Two concerns:
 - long-term: randomness in randomization vector evaporates
 - short-term: input to next round is not uniform

- First attempt: restore uniformity [BDNNRV Cardis ’13]
 - 3-share uniform threshold scheme for χ seems not to exist
 - increase number of shares to 4
 - inject additional randomness: 4 bits per KECCAK-f round

- Second attempt: measure damage [JDA presentations 2015]
 - see what can be done
 - at the expense of giving up on some provable security
 - result: cheap trick (almost) removing non-uniformity

- Third attempt [JDA, IACR ePrint (Nov.) 2016/1061]
 - tweaking the trick, effectively achieving uniformity
 - uniformly share any balanced degree-d S-box in $d + 1$ shares
Non-uniformity of the χ' sharing

- **Two concerns:**
 - long-term: randomness in randomization vector evaporates
 - short-term: input to next round is not uniform

- **First attempt: restore uniformity** [BDNNRV Cardis ’13]
 - 3-share uniform threshold scheme for χ seems not to exist
 - increase number of shares to 4
 - inject additional randomness: 4 bits per KECCAK-f round

- **Second attempt: measure damage** [JDA presentations 2015]
 - see what can be done
 - at the expense of giving up on some provable security
 - result: cheap trick (almost) removing non-uniformity

- **Third attempt** [JDA, IACR ePrint (Nov.) 2016/1061]
 - tweaking the trick, effectively achieving uniformity
 - uniformly share any balanced degree-d S-box in $d + 1$ shares
Outline

1 The original motivation

2 Distributions, spectrum and collision probability

3 Mappings and correlation matrices

4 In the setting of a shared implementation

5 Achieving uniformity
Imbalance spectrum of a distribution

- n-bit variable x with a given distribution $X(x)$
- Imbalance of a bit of x: indicates probability that it is 0 or 1
- Imbalance of a parity of x, defined by mask ν:

$$\tilde{X}[\nu] = \sum_{x} X(x)(-1)^{\nu^T \cdot x}$$

- Vector of imbalances for all 2^n masks ν: imbalance spectrum \tilde{X}
Imbalance spectrum of a distribution

- Vector of imbalances for all 2^n masks v: imbalance spectrum \tilde{X}
 - Note: $\forall X, \tilde{X}[0] = 1$
 - Reduced spectrum \hat{X}: \tilde{X} with $\tilde{X}[0]$ removed

- Total imbalance: energy in \hat{X}:

$$\phi_X = \|\hat{X}\|^2 = \sum_{v \neq 0} (\hat{X}[v])^2$$

- $\phi_X = 0$: uniform distribution, entropy n bits
- $\phi_X = 2^n - 1$: peak distribution, entropy 0 bits
Imbalance spectrum of a distribution

- Vector of imbalances for all 2^n masks ν: imbalance spectrum $\tilde{\chi}$
 - Note: $\forall \chi, \tilde{\chi}[0] = 1$
 - Reduced spectrum $\hat{\chi}$: $\tilde{\chi}$ with $\tilde{\chi}[0]$ removed

- Total imbalance: energy in $\hat{\chi}$:

 $$\phi_{\chi} = ||\hat{\chi}||^2 = \sum_{\nu \neq 0} (\tilde{\chi}[\nu])^2$$

- $\phi_{\chi} = 0$: uniform distribution, entropy n bits
- $\phi_{\chi} = 2^n - 1$: peak distribution, entropy 0 bits
Imbalance spectrum of a distribution

- Vector of imbalances for all 2^n masks v: imbalance spectrum $\tilde{\chi}$
 - Note: $\forall X, \tilde{\chi}[0] = 1$
 - Reduced spectrum $\hat{\chi}$: $\tilde{\chi}$ with $\tilde{\chi}[0]$ removed

- Total imbalance: energy in $\hat{\chi}$:
 \[
 \phi_X = ||\hat{\chi}||^2 = \sum_{v \neq 0} (\tilde{\chi}[v])^2
 \]

- $\phi_X = 0$: uniform distribution, entropy n bits
- $\phi_X = 2^n - 1$: peak distribution, entropy 0 bits
Outline

1. The original motivation
2. Distributions, spectrum and collision probability
3. Mappings and correlation matrices
4. In the setting of a shared implementation
5. Achieving uniformity
Correlation matrices

- Mapping from m to n bits: $f(x) = (f_1(x), f_2(x) \ldots f_n(x))$
- Correlation matrix $C(f)$:
 - 2^n rows and 2^m columns
 - element at row u, column v: $C(u^T \times f(x), v^T \times x)$
- Homomorphism:

 $\begin{align*}
 x & \quad \xrightarrow{f} \quad y = f(x) \\
 \uparrow \mathcal{L} & \quad \quad \quad \uparrow \mathcal{L} \\
 \alpha \text{ with } \alpha_u = (-1)^{x^T \times u} & \quad \xrightarrow{C(f)} \quad \beta = C(f) \times \alpha \text{ with } \beta_u = (-1)^{y^T \times u}
 \end{align*}$

- If f is an n-bit permutation: $C(f^{-1}) = (C(f))^{-1} = (C(f))^T$
Correlation matrices

- Mapping from m to n bits: $f(x) = (f_1(x), f_2(x) \ldots f_n(x))$

- Correlation matrix $C(f)$:
 - 2^n rows and 2^m columns
 - element at row u, column v: $C(u^T \times f(x), v^T \times x)$

- Homomorphism:

 $\begin{align*}
 x & \xrightarrow{f} y = f(x) \\
 & \Downarrow \mathcal{L} \\
 \alpha & \xrightarrow{C(f)} \beta = C(f) \times \alpha \\
 & \Downarrow \mathcal{L} \\
 \alpha_u & = (-1)^{x^T \times u} \\
 & \xrightarrow{C(f)} \beta_u = (-1)^{y^T \times u}
 \end{align*}$

- If f is an n-bit permutation: $C(f^{-1}) = (C(f))^{-1} = (C(f))^T$
Imbalance spectrum propagation

Let $y = f(x)$, then

$$\tilde{Y} = C^{(f)} \times \tilde{X}$$

With reduced spectra:

$$\begin{bmatrix} 1 \\ \hat{Y} \end{bmatrix} = \begin{bmatrix} 1 \\ f \end{bmatrix} C^{*(f)} \times \begin{bmatrix} 1 \\ \hat{X} \end{bmatrix}$$

So:

$$\hat{Y} = \hat{f} + C^{*(f)} \times \hat{X}$$

- \hat{f} imbalance vector of f
- $\phi_f = ||\hat{f}||^2$: imbalance contribution of f
Imbalance spectrum propagation

Let \(y = f(x) \), then

\[
\tilde{Y} = C(f) \times \tilde{X}
\]

With reduced spectra:

\[
\begin{bmatrix}
1 \\
\hat{Y}
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
\mu_f & C^*(f)
\end{bmatrix} \times \begin{bmatrix}
1 \\
\hat{X}
\end{bmatrix}
\]

So:

\[
\tilde{Y} = \mu_f + C^*(f) \times \hat{X}
\]

- \(\mu_f \) imbalance vector of \(f \)
- \(\phi_f = ||\mu_f||^2 \): imbalance contribution of \(f \)
Imbalance spectrum propagation

Let $y = f(x)$, then

$$\tilde{Y} = C^{(f)} \times \tilde{X}$$

With reduced spectra:

$$\begin{bmatrix} 1 \\ \tilde{Y} \end{bmatrix} = \begin{bmatrix} 1 \\ I_f \\ 0 \\ C^{*}(f) \end{bmatrix} \times \begin{bmatrix} 1 \\ \tilde{X} \end{bmatrix}$$

So:

$$\tilde{Y} = I_f + C^{*}(f) \times \tilde{X}$$

- I_f imbalance vector of f
- $\phi_f = ||I_f||^2$: imbalance contribution of f
Imbalance spectrum propagation

Let $y = f(x)$, then

$$\tilde{Y} = C^{(f)} \times \tilde{X}$$

With reduced spectra:

$$\begin{bmatrix} 1 \\ \hat{Y} \end{bmatrix} = \begin{bmatrix} 1 \\ I^f \\ C^*(f) \end{bmatrix} \times \begin{bmatrix} 1 \\ \hat{X} \end{bmatrix}$$

So:

$$\tilde{Y} = I^f + C^*(f) \times \hat{X}$$

- I^f imbalance vector of f
- $\phi_f = ||I^f||^2$: imbalance contribution of f
Macroscopic perspective: total imbalances

\[\hat{Y} = \hat{f} + C^*(f) \times \hat{X} \]

Assuming orthogonality:

\[||\hat{Y}||^2 \approx ||\hat{f}||^2 + ||C^*(f) \times \hat{X}||^2 \]

or (assuming \(\phi_f \ll 2^n \))

\[\phi_Y \approx \phi_X + \phi_f \]

For \(y = f(x) \) with \(f = f_r \circ f_{r-1} \cdots \circ f_1 \) this gives:

\[\phi_Y \approx \phi_X + \sum_i \phi_{f_i} \]

Total imbalance increases linearly with number of rounds
Macroscopic perspective: total imbalances

\[\hat{Y} = \hat{I} + C^*(f) \times \hat{X} \]

Assuming orthogonality:

\[\| \hat{Y} \|^2 \approx \| \hat{I} \|^2 + \| C^*(f) \times \hat{X} \|^2 \]

or (assuming \(\phi_f \ll 2^n \))

\[\phi_Y \approx \phi_X + \phi_f \]

For \(y = f(x) \) with \(f = f_r \circ f_{r-1} \cdots \circ f_1 \) this gives:

\[\phi_Y \approx \phi_X + \sum_i \phi_{f_i} \]

Total imbalance increases linearly with number of rounds
Macroscopic perspective: total imbalances

\[\hat{Y} = \hat{f} + C^*(f) \times \hat{X} \]

Assuming orthogonality:

\[\| \hat{Y} \|^2 \approx \| \hat{f} \|^2 + \| C^*(f) \times \hat{X} \|^2 \]

or (assuming \(\phi_f \ll 2^n \))

\[\phi_Y \approx \phi_X + \phi_f \]

For \(y = f(x) \) with \(f = f_r \circ f_{r-1} \cdots \circ f_1 \) this gives:

\[\phi_Y \approx \phi_X + \sum_i \phi_{f_i} \]

Total imbalance increases linearly with number of rounds
Macroscopic perspective: total imbalances

\[\hat{Y} = \hat{f} + C^*(f) \times \hat{X} \]

Assuming orthogonality:

\[\|\hat{Y}\|^2 \approx \|\hat{f}\|^2 + \|C^*(f) \times \hat{X}\|^2 \]

or (assuming \(\phi_f \ll 2^n \))

\[\phi_Y \approx \phi_X + \phi_f \]

For \(y = f(x) \) with \(f = f_r \circ f_{r-1} \cdots \circ f_1 \) this gives:

\[\phi_Y \approx \phi_X + \sum_i \phi_{f_i} \]

Total imbalance increases linearly with number of rounds
Macroscopic perspective: total imbalances

\[\hat{Y} = \hat{f} + C^*(f) \times \hat{X} \]

Assuming orthogonality:

\[\|\hat{Y}\|^2 \approx \|\hat{f}\|^2 + \|C^*(f) \times \hat{X}\|^2 \]

or (assuming \(\phi_f \ll 2^n\))

\[\phi_Y \approx \phi_X + \phi_f \]

For \(y = f(x)\) with \(f = f_r \circ f_{r-1} \cdots \circ f_1\) this gives:

\[\phi_Y \approx \phi_X + \sum_i \phi_{f_i} \]

Total imbalance increases linearly with number of rounds
Microscopic perspective: individual imbalances

Single round f (assuming uniform input):

$$\tilde{Y}[v] = If[v]$$

Two rounds $f_0 \circ f_{-1}$

$$\hat{Y} = If_0 + C^*(f_0) \times If_{-1}$$

So

$$\tilde{Y}[v] = If_0[v] + \sum_w C^*_v(f_0) \times If_{-1}[w]$$

Elements in $If_{-1}[w]$ are multiplied by elements of correlation matrix.
Microscopic perspective: individual imbalances

Single round f (assuming uniform input):

$$\tilde{Y}[v] = I^f[v]$$

Two rounds $f_0 \circ f_{-1}$

$$\hat{Y} = I^{f_0} + C^*(f_0) \times I^{f_{-1}}$$

So

$$\tilde{Y}[v] = I^{f_0}[v] + \sum_w C^*_w(v) \times I^{f_{-1}}[w]$$

Elements in $I^{f_{-1}}[w]$ are multiplied by elements of correlation matrix
Microscopic perspective: individual imbalances

Single round f (assuming uniform input):

$$\tilde{Y}[v] = I^f[v]$$

Two rounds $f_0 \circ f_1$

$$\hat{Y} = I^{f_0} + C^*(f_0) \times I^{f_1}$$

So

$$\tilde{Y}[v] = I^{f_0}[v] + \sum_w C^*_v(f_0) \times I^{f_1}[w]$$

Elements in $I^{f_1}[w]$ are multiplied by elements of correlation matrix
Microscopic perspective: individual imbalances

Single round f (assuming uniform input):

$$\tilde{Y}[v] = If[v]$$

Two rounds $f_0 \circ f_{-1}$

$$\hat{Y} = If_0 + C^*(f_0) \times If_{-1}$$

So

$$\tilde{Y}[v] = If_0[v] + \sum_w C^*_{vw}(f_0) \times If_{-1}[w]$$

Elements in $If_{-1}[w]$ are multiplied by elements of correlation matrix
Microscopic perspective (cont’d)

Adding a round f_{-r}

$$\hat{Y} = \ldots + \prod_{0 \leq i < r} C^*(f_{-i}) \times p^{f-r}$$

In terms of linear trails Q

$$\hat{\gamma}[v] = \ldots + \sum_w \left(\sum_{Q \text{ with } q_{-r} = w \text{ and } q_0 = v} C_Q \right) l^{f-r}[w]$$

- Imbalances in l^{f-r} multiplied by trail correlation contributions C_Q
- Energy from l^{f-r} more and more diffused as r increases
Adding a round f_{-r}

$$\hat{Y} = \ldots + \prod_{0 \leq i < r} C^*(f_i) \times l^{f-r}$$

In terms of linear trails Q

$$\tilde{Y}[v] = \ldots + \sum_w \left(\sum_{Q \text{ with } q_{-r}=w \text{ and } q_0=v} C_Q \right) l^{f-r}[w]$$

- Imbalances in l^{f-r} multiplied by trail correlation contributions C_Q
- Energy from l^{f-r} more and more diffused as r increases
Adding a round f_{-r}

$$
\hat{Y} = \ldots + \prod_{0 \leq i < r} C^* (f_{-i}) \times \mathcal{I}^{f_{-r}}
$$

In terms of linear trails Q

$$
\tilde{Y}[v] = \ldots + \sum_{w} \left(\sum_{Q \text{ with } q_{-r}=w \text{ and } q_0=v} C_Q \right) \mathcal{I}^{f_{-r}}[w]
$$

- Imbalances in $\mathcal{I}^{f_{-r}}$ multiplied by trail correlation contributions C_Q
- Energy from $\mathcal{I}^{f_{-r}}$ more and more diffused as r increases
Adding a round f_{-r}

$$\hat{Y} = \ldots + \prod_{0 \leq i < r} C^*(f_{-i}) \times I^{f_{-r}}$$

In terms of linear trails Q

$$\tilde{Y}[v] = \ldots + \sum_w \left(\sum_{Q \text{ with } q_{-r}=w \text{ and } q_0=v} C_Q \right) I^{f_{-r}}[w]$$

- Imbalances in $I^{f_{-r}}$ multiplied by trail correlation contributions C_Q
- Energy from $I^{f_{-r}}$ more and more diffused as r increases
Microscopic perspective (cont’d)

Adding a round f_{-r}

$$
\hat{Y} = \ldots + \prod_{0 \leq i < r} C^*(f_i) \times \rho_{-r}
$$

In terms of linear trails Q

$$
\tilde{Y}[v] = \ldots + \sum_w \left(\sum_{Q \text{ with } q_{-r}=w \text{ and } q_0=v} C_Q \right) \rho_{-r}[w]
$$

- Imbalances in ρ_{-r} multiplied by trail correlation contributions C_Q
- Energy from ρ_{-r} more and more diffused as r increases
Visualization: iteration of a single transformation f
Visualization: composition of transformations $f(i)$
Outline

1. The original motivation
2. Distributions, spectrum and collision probability
3. Mappings and correlation matrices
4. In the setting of a shared implementation
5. Achieving uniformity
Our DPA setting

- **Shared implementation**
- **Data complexity:** z traces
 - all have same native state sequence x
 - partially unknown
 - different inputs at the end for doing DPA
 - initial state: z independent randomization vectors x_b, x_c

- Operations recorded in a trace consists of iterations of round function interleaved with round constant addition or absorbing input
- We study the propagation of imbalances in the randomization vector
Our DPA setting

- **Shared implementation**
- **Data complexity:** \(z \) traces
 - all have same native state sequence \(x \)
 - partially unknown
 - different inputs at the end for doing DPA
 - initial state: \(z \) independent randomization vectors \(x_b, x_c \)

- Operations recorded in a trace consists of iterations of round function interleaved with round constant addition or absorbing input

- We study the propagation of imbalances in the randomization vector
Our DPA setting

- Shared implementation
- Data complexity: \(z \) traces
 - all have same native state sequence \(x \)
 - partially unknown
 - different inputs at the end for doing DPA
 - initial state: \(z \) independent randomization vectors \(x_b, x_c \)
- Operations recorded in a trace consists of iterations of round function interleaved with round constant addition or absorbing input
- We study the propagation of imbalances in the randomization vector
Our DPA setting

- Shared implementation
- Data complexity: \(z \) traces
 - all have same native state sequence \(x \)
 - partially unknown
 - different inputs at the end for doing DPA
 - initial state: \(z \) independent randomization vectors \(x_b, x_c \)

- Operations recorded in a trace consists of iterations of round function interleaved with round constant addition or absorbing input
- We study the propagation of imbalances in the randomization vector
In the setting of a shared implementation

Our DPA setting

- Shared implementation
- Data complexity: \(z \) traces
 - all have same native state sequence \(x \)
 - partially unknown
 - different inputs at the end for doing DPA
 - initial state: \(z \) independent randomization vectors \(x_b, x_c \)

- Operations recorded in a trace consists of iterations of round function interleaved with round constant addition or absorbing input

- We study the propagation of imbalances in the randomization vector
In the setting of a shared implementation

Our DPA setting

- Shared implementation
- Data complexity: z traces
 - all have same native state sequence x
 - partially unknown
 - different inputs at the end for doing DPA
 - initial state: z independent randomization vectors x_b, x_c

- Operations recorded in a trace consists of iterations of round function interleaved with round constant addition or absorbing input
- We study the propagation of imbalances in the randomization vector
In the setting of a shared implementation

Our DPA setting

- Shared implementation
- Data complexity: z traces
 - all have same native state sequence x
 - partially unknown
 - different inputs at the end for doing DPA
 - initial state: z independent randomization vectors x_b, x_c

- Operations recorded in a trace consists of iterations of round function interleaved with round constant addition or absorbing input
- We study the propagation of imbalances in the randomization vector
Our DPA setting

- Shared implementation
- Data complexity: \(z \) traces
 - all have same native state sequence \(x \)
 - partially unknown
 - different inputs at the end for doing DPA
 - initial state: \(z \) independent randomization vectors \(x_b, x_c \)

- Operations recorded in a trace consists of iterations of round function interleaved with round constant addition or absorbing input
- We study the propagation of imbalances in the randomization vector
Analyzing propagation

- Determine relevant masks \((v_b, v_c)\)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the *smallest* combinatorial blocks
 - Trace each output bit to its inputs: *support range*
 - Don’t forget to include multiplexers etc.
 - Specific for the hardware architecture
 - Relevant masks \((v_b, v_c)\): those that are zero outside support range

- Investigate propagation of imbalance vectors \(I^{R'}[x]\)
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share KECCAK implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
In the setting of a shared implementation

Analyzing propagation

- Determine relevant masks \((v_b, v_c)\)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the \textit{smallest} combinatorial blocks
 - Trace each output bit to its inputs: \textit{support range}
 - Don’t forget to include multiplexers etc.
 - Specific for the hardware architecture
 - Relevant masks \((v_b, v_c)\): those that are zero outside support range

- Investigate propagation of imbalance vectors \(I^{R'}[x]\)
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share KECCAK implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
Analyzing propagation

- Determine relevant masks \((v_b, v_c)\)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the *smallest* combinatorial blocks
 - Trace each output bit to its inputs: *support range*
 - Don’t forget to include multiplexers etc.
 - Specific for the hardware architecture
 - Relevant masks \((v_b, v_c)\): those that are zero outside support range

- Investigate propagation of imbalance vectors \(I^{R′}[x]\)
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share KECCAK implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
Analyzing propagation

Determine relevant masks \((v_b, v_c)\)

- A combinatorial circuit may leak if its input is non-uniform
- Identify the *smallest* combinatorial blocks
- Trace each output bit to its inputs: *support range*
- Don’t forget to include multiplexers etc.
- Specific for the hardware architecture
- Relevant masks \((v_b, v_c)\): those that are zero outside support range

Investigate propagation of imbalance vectors \(I^R[x]\)

- of previous round
- of round before
- ...as many rounds as considered relevant

Preliminary conclusion for three-share KECCAK implementation:

- exploiting non-uniformity likely harder than higher-order attacks
- but it would be nice to get rid of non-uniformity nonetheless
In the setting of a shared implementation

Analyzing propagation

- Determine relevant masks \((v_b, v_c)\)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the *smallest* combinatorial blocks
 - Trace each output bit to its inputs: *support range*
 - Don’t forget to include multiplexers etc.
 - *Specific for the hardware architecture*
 - Relevant masks \((v_b, v_c)\): those that are zero outside support range

- Investigate propagation of imbalance vectors \(I^R[x]\)
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share KECCAK implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
Analyzing propagation

- Determine relevant masks \((v_b, v_c)\)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the \textit{smallest} combinatorial blocks
 - Trace each output bit to its inputs: \textit{support range}
 - Don’t forget to include multiplexers etc.
 - Specific for the hardware architecture
 - Relevant masks \((v_b, v_c)\): \textit{those that are zero outside support range}

- Investigate propagation of imbalance vectors \(I^{R'}[x]\)
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share KECCAK implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
Analyzing propagation

- Determine relevant masks \((v_b, v_c)\)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the \textit{smallest} combinatorial blocks
 - Trace each output bit to its inputs: \textit{support range}
 - Don’t forget to include multiplexers etc.
 - \textbf{Specific for the hardware architecture}
 - Relevant masks \((v_b, v_c)\): \textbf{those that are zero outside support range}

- Investigate propagation of imbalance vectors \(I^{R'}[x]\)
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share KECCAK implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
In the setting of a shared implementation

Analyzing propagation

- Determine relevant masks (v_b, v_c)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the smallest combinatorial blocks
 - Trace each output bit to its inputs: support range
 - Don’t forget to include multiplexers etc.
 - Specific for the hardware architecture
 - Relevant masks (v_b, v_c): those that are zero outside support range

- Investigate propagation of imbalance vectors $I^{R'}[x]$
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share KECCAK implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
Analyzing propagation

- Determine relevant masks \((v_b, v_c)\)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the \textit{smallest} combinatorial blocks
 - Trace each output bit to its inputs: \textit{support range}
 - Don’t forget to include multiplexers etc.
 - Specific for the hardware architecture
 - Relevant masks \((v_b, v_c)\): \textit{those that are zero outside support range}

- Investigate propagation of imbalance vectors \(I^{R'}[x]\)
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share KECCAK implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
Analyzing propagation

- Determine relevant masks \((v_b, v_c)\)
 - A combinatorial circuit may leak if its input is non-uniform
 - Identify the \textit{smallest} combinatorial blocks
 - Trace each output bit to its inputs: \textit{support range}
 - Don’t forget to include multiplexers etc.
 - \textbf{Specific for the hardware architecture}
 - Relevant masks \((v_b, v_c)\): those that are zero outside support range

- Investigate propagation of imbalance vectors \(I^{R'}[x]\)
 - of previous round
 - of round before
 - ...as many rounds as considered relevant

- Preliminary conclusion for three-share \texttt{KECCAK} implementation:
 - exploiting non-uniformity likely harder than higher-order attacks
 - but it would be nice to get rid of non-uniformity nonetheless
Determining relevant masks (v_b, v_c)
- A combinatorial circuit may leak if its input is non-uniform
- Identify the *smallest* combinatorial blocks
- Trace each output bit to its inputs: *support range*
- Don’t forget to include multiplexers etc.
- Specific for the hardware architecture
- Relevant masks (v_b, v_c): those that are zero outside support range

Investigating propagation of imbalance vectors $I^{R'}[x]$
- of previous round
- of round before
- ...as many rounds as considered relevant

Preliminary conclusion for three-share *Keccak* implementation:
- exploiting non-uniformity likely harder than higher-order attacks
- but it would be nice to get rid of non-uniformity nonetheless
Outline

1. The original motivation
2. Distributions, spectrum and collision probability
3. Mappings and correlation matrices
4. In the setting of a shared implementation
5. Achieving uniformity
Achieving uniformity

Borrowing randomness from the neighbours

- Repair uniformity by taking randomness from neighbour’s input
- Does not affect correctness and incompleteness
- Works for 3 shares, generalizes to any number of shares
- Output is uniformly shared if
 - Input is uniformly shared
 - \((r_b, r_c)\) has a uniform distribution
Achieving uniformity

Borrowing randomness from the neighbours

- Repair uniformity by taking randomness from neighbour's input
- Does not affect correctness and incompleteness
- Works for 3 shares, generalizes to any number of shares
- Output is uniformly shared if
 - Input is uniformly shared
 - \((r_b, r_c)\) has a uniform distribution
Achieving uniformity

Borrowing randomness from the neighbours

- Repair uniformity by taking randomness from neighbour’s input
- Does not affect correctness and incompleteness
- Works for 3 shares, generalizes to any number of shares
- Output is uniformly shared if
 - Input is uniformly shared
 - \((r_b, r_c)\) has a uniform distribution
Solution 1: injecting randomness

- \((r_b, r_c)\) are generated freshly every round
- \((R_b, R_c)\) thrown away
- If S-box width is \(n\) bits, requires \(2n\) random bits per round
- **Keccak**: \(n = 5\), but we can reduce to 4 random bits

Was already presented and proven secure in [Bilgin, Daemen, Nikova, Nikov, Rijmen, Van Assche, Cardis ’13]
Solution 1: injecting randomness

- \((r_b, r_c)\) are generated freshly every round
- \((R_b, R_c)\) thrown away
- If S-box width is \(n\) bits, requires \(2n\) random bits per round
- Keccak: \(n = 5\), but we can reduce to 4 random bits

Was already presented and proven secure in [Bilgin, Daemen, Nikova, Nikov, Rijmen, Van Assche, Cardis ’13]
Achieving uniformity

Solution 1: injecting randomness

- \((r_b, r_c) \) are generated freshly every round
- \((R_b, R_c) \) thrown away
- If S-box width is \(n \) bits, requires \(2n \) random bits per round
- KECCAK: \(n = 5 \), but we can reduce to 4 random bits

Was already presented and proven secure in [Bilgin, Daemen, Nikova, Nikov, Rijmen, Van Assche, Cardis ’13]
Solution 1: injecting randomness

- \((r_b, r_c)\) are generated freshly every round
- \((R_b, R_c)\) thrown away
- If S-box width is \(n\) bits, requires \(2n\) random bits per round
- Keccak: \(n = 5\), but we can reduce to 4 random bits

Was already presented and proven secure in [Bilgin, Daemen, Nikova, Nikov, Rijmen, Van Assche, Cardis ’13]
Achieving uniformity

Solution 1: injecting randomness

- \((r_b, r_c)\) are generated freshly every round
- \((R_b, R_c)\) thrown away
- If S-box width is \(n\) bits, requires \(2n\) random bits per round
- **Keccak**: \(n = 5\), but we can reduce to 4 random bits

Was already presented and proven secure in [Bilgin, Daemen, Nikova, Nikov, Rijmen, Van Assche, Cardis '13]
Solution 2: cycling randomness

- \((r_b, r_c) = (R_b, R_c)\)
- S-boxes are arranged in circle
- No more need for generating randomness
- Some non-uniformity remains ...

Presented earlier at [Shonan, Sep.'14] [ESC, Jan.'15] [TI Day, May'15]
Solution 2: cycling randomness

- \((r_b, r_c) = (R_b, R_c)\)
- S-boxes are arranged in circle
 - No more need for generating randomness
 - Some non-uniformity remains ...

Presented earlier at [Shonan, Sep.’14] [ESC, Jan.’15] [TI Day, May’15]
Achieving uniformity

Solution 2: cycling randomness

- \((r_b, r_c) = (R_b, R_c)\)
- S-boxes are arranged in circle
- No more need for generating randomness
- Some non-uniformity remains ...

Presented earlier at [Shonan, Sep.’14] [ESC, Jan.’15] [TI Day, May’15]
Solution 2: cycling randomness

- \((r_b, r_c) = (R_b, R_c)\)
- S-boxes are arranged in circle
- No more need for generating randomness
- Some non-uniformity remains ...

Presented earlier at [Shonan, Sep.’14] [ESC, Jan.’15] [TI Day, May’15]
Solution 2: cycling randomness

- \((r_b, r_c) = (R_b, R_c)\)
- S-boxes are arranged in circle
- No more need for generating randomness
- Some non-uniformity remains ...

Presented earlier at [Shonan, Sep.’14] [ESC, Jan.’15] [TI Day, May’15]
Achieving uniformity

Conceptual mapping of \((x_b, x_c)\) to \((y_b, y_c)\)

Properties of imbalance vector \(I^B\)

- \(C(0, u) = 0\) if \(u \neq 0\), for any possible S-box
- \(C^a(v, 0) \neq 0 \Rightarrow \forall i : v_i = 0\)
- Non-zero elements of imbalance vector \(I^B\)
 - are active in all S-boxes
 - amplitude \(\leq (\max_{(u,v)} C^{(S_{a,b,c})}(u, v)) \#S\text{-boxes}\)
 - e.g., \(\leq 2^{-80}\) for KECCAK-f[200]
Conceptual mapping of \((x_b, x_c)\) to \((y_b, y_c)\)

Properties of imbalance vector \(I^\beta\)

- \(C(0, u) = 0\) if \(u \neq 0\), for any possible S-box
- \(C^\alpha(v, 0) \neq 0 \Rightarrow \forall i : v_i = 0\)

Non-zero elements of imbalance vector \(I^\beta\)

- are active in all S-boxes
- amplitude \(\leq (\max_{(u,v)} C(S_{a,b,c}(u,v)) \#S\text{-boxes})\)
- e.g., \(\leq 2^{-80}\) for KECCAK-f[200]
Solution 3: recycling randomness (New!)

- \((R_b, R_c)\) is part of the shared state
- \((r_b, r_c)\) is \((R_b, R_c)\) from previous round
- Achieves uniformity if S-box is invertible
- Cost:
 - 4 additional XORs per native bit
 - shared state extended by \(2n\) additional bits (for \(n\)-bit S-box)
Achieving uniformity

Solution 3: recycling randomness (New!)

- \((R_b, R_c)\) is part of the shared state
- \((r_b, r_c)\) is \((R_b, R_c)\) from previous round
- Achieves uniformity if S-box is invertible
- Cost:
 - 4 additional XORs per native bit
 - shared state extended by \(2n\) additional bits (for \(n\)-bit S-box)
Solution 3: recycling randomness (New!)

- \((R_b, R_c)\) is part of the shared state
- \((r_b, r_c)\) is \((R_b, R_c)\) from previous round
- Achieves uniformity if S-box is invertible

Cost:
- 4 additional XORs per native bit
- shared state extended by \(2n\) additional bits (for \(n\)-bit S-box)
Achieving uniformity

Solution 3: recycling randomness (New!)

- (R_b, R_c) is part of the shared state
- (r_b, r_c) is (R_b, R_c) from previous round
- Achieves uniformity if S-box is invertible
- Cost:
 - 4 additional XORs per native bit
 - shared state extended by $2n$ additional bits (for n-bit S-box)
Solution 3: proof of uniformity

Computing \((a, b, c)\) and \((r_b, r_c)\) from \((A, B, C)\) and \((R_b, R_c)\)

- Initial step: \(b_2 \leftarrow R_c\) and \(c_2 \leftarrow R_b\)
- Iteration: compute \((a_i, b_{i-1}, c_{i-1})\) from \((A_i, B_i, C_i)\) and \((b_i, c_i)\)
 - \(a_i = S^{-1}(A_i + B_i + C_i) + b_i + c_i\)
 - \(b_{i-1} = S_c(a_i, b_i) + C_i\)
 - \(c_{i-1} = S_b(a_i, b_i) + B_i\)
- Final step: \(r_b \leftarrow b_{-1}\) and \(r_c \leftarrow c_{-1}\)
- Invertibility implies uniformity: QED
Solution 3: proof of uniformity

Computing \((a, b, c)\) and \((r_b, r_c)\) from \((A, B, C)\) and \((R_b, R_c)\)

- **Initial step:** \(b_2 \leftarrow R_c\) and \(c_2 \leftarrow R_b\)
- **Iteration:** compute \((a_i, b_{i-1}, c_{i-1})\) from \((A_i, B_i, C_i)\) and \((b_i, c_i)\)
 - \(a_i = S^{-1}(A_i + B_i + C_i) + b_i + c_i\)
 - \(b_{i-1} = S_c(a_i, b_i) + C_i\)
 - \(c_{i-1} = S_b(a_i, b_i) + B_i\)
- **Final step:** \(r_b \leftarrow b_{-1}\) and \(r_c \leftarrow c_{-1}\)
- **Invertibility implies uniformity:** QED
Computing \((a, b, c)\) and \((r_b, r_c)\) from \((A, B, C)\) and \((R_b, R_c)\)

- **Initial step:** \(b_2 \leftarrow R_c\) and \(c_2 \leftarrow R_b\)
- **Iteration:** compute \((a_i, b_{i-1}, c_{i-1})\) from \((A_i, B_i, C_i)\) and \((b_i, c_i)\)
 - \(a_i = S^{-1}(A_i + B_i + C_i) + b_i + c_i\)
 - \(b_{i-1} = S_c(a_i, b_i) + C_i\)
 - \(c_{i-1} = S_b(a_i, b_i) + B_i\)
- **Final step:** \(r_b \leftarrow b_{-1}\) and \(r_c \leftarrow c_{-1}\)
- **Invertibility implies uniformity:** QED
Computing \((a, b, c)\) and \((r_b, r_c)\) from \((A, B, C)\) and \((R_b, R_c)\)

- **Initial step:** \(b_2 \leftarrow R_c\) and \(c_2 \leftarrow R_b\)
- **Iteration:** compute \((a_i, b_{i-1}, c_{i-1})\) from \((A_i, B_i, C_i)\) and \((b_i, c_i)\)
 - \(a_i = S^{-1}(A_i + B_i + C_i) + b_i + c_i\)
 - \(b_{i-1} = S_c(a_i, b_i) + C_i\)
 - \(c_{i-1} = S_b(a_i, b_i) + B_i\)
- **Final step:** \(r_b \leftarrow b_{-1}\) and \(r_c \leftarrow c_{-1}\)
- **Invertibility implies uniformity:** QED
Computing \((a, b, c)\) and \((r_b, r_c)\) from \((A, B, C)\) and \((R_b, R_c)\)

- **Initial step:** \(b_2 \leftarrow R_c\) and \(c_2 \leftarrow R_b\)
- **Iteration:** compute \((a_i, b_{i-1}, c_{i-1})\) from \((A_i, B_i, C_i)\) and \((b_i, c_i)\)
 - \(a_i = S^{-1}(A_i + B_i + C_i) + b_i + c_i\)
 - \(b_{i-1} = S_c(a_i, b_i) + C_i\)
 - \(c_{i-1} = S_b(a_i, b_i) + B_i\)
- **Final step:** \(r_b \leftarrow b_{-1}\) and \(r_c \leftarrow c_{-1}\)
- **Invertibility implies uniformity:** QED
Solution 3: proof of uniformity

Computing \((a, b, c)\) and \((r_b, r_c)\) from \((A, B, C)\) and \((R_b, R_c)\)

- **Initial step:** \(b_2 \leftarrow R_c\) and \(c_2 \leftarrow R_b\)
- **Iteration:** compute \((a_i, b_{i-1}, c_{i-1})\) from \((A_i, B_i, C_i)\) and \((b_i, c_i)\)
 - \(a_i = S^{-1}(A_i + B_i + C_i) + b_i + c_i\)
 - \(b_{i-1} = S_c(a_i, b_i) + C_i\)
 - \(c_{i-1} = S_b(a_i, b_i) + B_i\)
- **Final step:** \(r_b \leftarrow b_{-1}\) and \(r_c \leftarrow c_{-1}\)
- **Invertibility implies uniformity:** QED
Computing \((a, b, c)\) and \((r_b, r_c)\) from \((A, B, C)\) and \((R_b, R_c)\)

- Initial step: \(b_2 \leftarrow R_c\) and \(c_2 \leftarrow R_b\)
- Iteration: compute \((a_i, b_{i-1}, c_{i-1})\) from \((A_i, B_i, C_i)\) and \((b_i, c_i)\)
 - \(a_i = S^{-1}(A_i + B_i + C_i) + b_i + c_i\)
 - \(b_{i-1} = S_c(a_i, b_i) + C_i\)
 - \(c_{i-1} = S_b(a_i, b_i) + B_i\)
- Final step: \(r_b \leftarrow b_{-1}\) and \(r_c \leftarrow c_{-1}\)
- Invertibility implies uniformity: QED
Computing \((a, b, c)\) and \((r_b, r_c)\) from \((A, B, C)\) and \((R_b, R_c)\)

- **Initial step:** \(b_2 \leftarrow R_c\) and \(c_2 \leftarrow R_b\)
- **Iteration:** compute \((a_i, b_{i-1}, c_{i-1})\) from \((A_i, B_i, C_i)\) and \((b_i, c_i)\)
 - \(a_i = S^{-1}(A_i + B_i + C_i) + b_i + c_i\)
 - \(b_{i-1} = S_c(a_i, b_i) + C_i\)
 - \(c_{i-1} = S_b(a_i, b_i) + B_i\)
- **Final step:** \(r_b \leftarrow b_{-1}\) and \(r_c \leftarrow c_{-1}\)
- Invertibility implies uniformity: QED
Application to χ'{0

\[A_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2} + b_{i+1}c_{i+2} + b_{i+2}c_{i+1} \]
\[B_i \leftarrow c_i + (c_{i+1} + 1)c_{i+2} + c_{i+1}a_{i+2} + c_{i+2}a_{i+1} \]
\[C_i \leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + a_{i+2}b_{i+1} \]

- **Multipermutation property of χ'**:
 - let $x|_{\ell} = (x_0, x_1)$: left part of x
 - let $x|r = (x_2, x_3, x_4)$: right part of x
 - Mapping from $((a, b, c)|_{\ell}, (A, B, C)|r)$ to $((a, b, c)|r, (A, B, C)|_{\ell})$ is permutation

- This allows us to
 - only add randomness to left part: 8 XOR gates per row
 - limit r_b and r_c each to two bits
Achieving uniformity

Application to χ'

$$A_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2} + b_{i+1}c_{i+2} + b_{i+2}c_{i+1}$$
$$B_i \leftarrow c_i + (c_{i+1} + 1)c_{i+2} + c_{i+1}a_{i+2} + c_{i+2}a_{i+1}$$
$$C_i \leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + a_{i+2}b_{i+1}$$

- **Multipermutation property of χ':**
 - let $x|\ell = (x_0, x_1)$: left part of x
 - let $x|r = (x_2, x_3, x_4)$: right part of x
 - Mapping from $((a, b, c)|\ell, (A, B, C)|r)$ to $((a, b, c)|r, (A, B, C)|\ell)$ is permutation

- This allows us to
 - only add randomness to left part: 8 XOR gates per row
 - limit r_b and r_c each to two bits
Achieving uniformity

Application to χ'

\[
A_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2} + b_{i+1}c_{i+2} + b_{i+2}c_{i+1}
\]
\[
B_i \leftarrow c_i + (c_{i+1} + 1)c_{i+2} + c_{i+1}a_{i+2} + c_{i+2}a_{i+1}
\]
\[
C_i \leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + a_{i+2}b_{i+1}
\]

- **Multipermutation property of χ':**
 - let $x|_\ell = (x_0, x_1)$: left part of x
 - let $x|_r = (x_2, x_3, x_4)$: right part of x
 - Mapping from $((a, b, c)|_\ell, (A, B, C)|_r)$ to $((a, b, c)|_r, (A, B, C)|_\ell)$ is permutation

- This allows us to
 - only add randomness to left part: 8 XOR gates per row
 - limit r_b and r_c each to two bits
Generalization for invertible n-bit S-box of degree d

- **Correct and incomplete sharing:** $d + 1$ shares
- **Randomness borrowing:**
 - randomization vector R: last d shares
 - each share of R of S-box $i - 1$ added to 2 shares of S-box i
- **Total cost due to randomness borrowing (worst case):**
 - feedforward: $2d$ XORs per native bit
 - state expansion by $d \times n$ bits
- **Cost is reduced if shared S-box has multi-permutation property**
Generalization for invertible n-bit S-box of degree d

- Correct and incomplete sharing: $d + 1$ shares
- Randomness borrowing:
 - randomization vector R: last d shares
 - each share of R of S-box $i - 1$ added to 2 shares of S-box i
- Total cost due to randomness borrowing (worst case)
 - feedforward: $2d$ XORs per native bit
 - state expansion by $d \times n$ bits
- Cost is reduced if shared S-box has multi-permutation property
Generalization for invertible n-bit S-box of degree d

- Correct and incomplete sharing: $d + 1$ shares
- Randomness borrowing:
 - randomization vector R: last d shares
 - each share of R of S-box i $-$ 1 added to 2 shares of S-box i
- Total cost due to randomness borrowing (worst case)
 - feedforward: $2d$ XORs per native bit
 - state expansion by $d \times n$ bits
- Cost is reduced if shared S-box has multi-permutation property
Generalization for invertible n-bit S-box of degree d

- Correct and incomplete sharing: $d + 1$ shares
- Randomness borrowing:
 - randomization vector R: last d shares
 - each share of R of S-box $i - 1$ added to 2 shares of S-box i
- Total cost due to randomness borrowing (worst case)
 - feedforward: $2d$ XORs per native bit
 - state expansion by $d \times n$ bits
- Cost is reduced if shared S-box has multi-permutation property
Generalization for invertible n-bit S-box of degree d

- Correct and incomplete sharing: $d + 1$ shares
- Randomness borrowing:
 - randomization vector R: last d shares
 - each share of R of S-box $i - 1$ added to 2 shares of S-box i
- Total cost due to randomness borrowing (worst case)
 - feedforward: $2d$ XORs per native bit
 - state expansion by $d \times n$ bits
- Cost is reduced if shared S-box has multi-permutation property
Generalization for invertible n-bit S-box of degree d

- Correct and incomplete sharing: $d + 1$ shares
- Randomness borrowing:
 - randomization vector R: last d shares
 - each share of R of S-box $i - 1$ added to 2 shares of S-box i
- Total cost due to randomness borrowing (worst case)
 - feedforward: $2d$ XORs per native bit
 - state expansion by $d \times n$ bits
- Cost is reduced if shared S-box has multi-permutation property
Conclusions

- Spectral perspective to lossy mappings
- Natural application of correlation matrices
- Technique for achieving provable first-order DPA resistance
 - KECCAK: χ', borrowing at cost 8 XORs per row
 - relatively cheap for any invertible S-box
- Abandon quest for uniformly shareable S-boxes
- Look for low-degree S-boxes with multi-permutation sharing instead

Thanks for your attention!
Conclusions

- Spectral perspective to lossy mappings
- Natural application of correlation matrices
- Technique for achieving provable first-order DPA resistance
 - KECCAK: χ', borrowing at cost 8 XORs per row
 - relatively cheap for any invertible S-box
- Abandon quest for uniformly shareable S-boxes
- Look for low-degree S-boxes with multi-permutation sharing instead

Thanks for your attention!
Conclusions

- Spectral perspective to lossy mappings
- Natural application of correlation matrices
- Technique for achieving provable first-order DPA resistance
 - KECCAK: χ', borrowing at cost 8 XORs per row
 - relatively cheap for any invertible S-box
- Abandon quest for uniformly shareable S-boxes
- Look for low-degree S-boxes with multi-permutation sharing instead

Thanks for your attention!

Q?
Conclusions

- Spectral perspective to lossy mappings
- Natural application of correlation matrices
- Technique for achieving provable first-order DPA resistance
 - KECCAK: χ', borrowing at cost 8 XORs per row
 - relatively cheap for any invertible S-box
- Abandon quest for uniformly shareable S-boxes
- Look for low-degree S-boxes with multi-permutation sharing instead

Thanks for your attention!
Conclusions

- Spectral perspective to lossy mappings
- Natural application of correlation matrices
- Technique for achieving provable first-order DPA resistance
 - KECCAK: χ', borrowing at cost 8 XORs per row
 - relatively cheap for any invertible S-box
- Abandon quest for uniformly shareable S-boxes
- Look for low-degree S-boxes with multi-permutation sharing instead

Thanks for your attention!
Conclusions

- Spectral perspective to lossy mappings
- Natural application of correlation matrices
- Technique for achieving provable first-order DPA resistance
 - KECCAK: χ', borrowing at cost 8 XORs per row
 - relatively cheap for any invertible S-box
- Abandon quest for uniformly shareable S-boxes
- Look for low-degree S-boxes with multi-permutation sharing instead

Thanks for your attention!
Conclusions

- Spectral perspective to lossy mappings
- Natural application of correlation matrices
- Technique for achieving provable first-order DPA resistance
 - KECCAK: χ', borrowing at cost 8 XORs per row
 - relatively cheap for any invertible S-box
- Abandon quest for uniformly shareable S-boxes
- Look for low-degree S-boxes with multi-permutation sharing instead

Thanks for your attention!
Conclusions

- Spectral perspective to lossy mappings
- Natural application of correlation matrices
- Technique for achieving provable first-order DPA resistance
 - KECCAK: χ', borrowing at cost 8 XORs per row
 - relatively cheap for any invertible S-box
- Abandon quest for uniformly shareable S-boxes
- Look for low-degree S-boxes with multi-permutation sharing instead

Thanks for your attention!