

The IPCC Fourth Assessment Report Global Mean Temperature from Radiative Forcing

Atmosphere-Ocean Global Circulation Models (AOGCMs)

Based on weather prediction models Highly complex Take weeks and even months to run Predict temperature, wind, etc. as a function of latitude and longitude Predict global mean temperature

The IPCC Fourth Assessment Report

Global Mean Temperature from Radiative Forcing

Policy Question:

Should we build a wind farm in North Dakota? *I.e.*, will there be enough wind in North Dakota in 20 years? AOGCMs are the only hope.

Scientific Question:

How does the global mean temperature respond to radiative forcing? Perhaps there are simple models. The IPCC Fourth Assessment Report Global Mean Temperature Predictions

The IPCC Fourth Assessment Report RF from GHG
Reverse Engineering
$RF = a(RF_c + RF_M) + b$
where $a \approx 1.33$ $b \approx -0.96$

