Milankovitch Cycles

Richard McGehee

Seminar on the Mathematics of Climate Change
School of Mathematics
March 31, 2009

http://www.tqnyc.org/NYC052141/beginningpage.html

Solar Forcing

Milankovitch Cycles

http://en.wikipedia.org/wiki/Milankovitch_cycles

Climate Response (Zachos, et al)

A. Power spectrum of climate for the last 4.5 Myr. Note the peaks at 41Kyr and 100 Kyr.

B. Power spectrum of climate for the period 25 Myr bp to 20.5 Myr bp. Note the new peak at 400 Kyr and the “split” peaks at 126Kyr and 95 Kyr.

Budyko’s Ice Line Model

The annual global average insolation is Q. The annual average insolation as a function of latitude θ, where $y = \sin \theta$, is $Q(y).$ Q is largely determined by the eccentricity, but $s(y)$ is determined from a combination of the other orbital elements.

What is $s(y)$ as a function of obliquity and precession?

Insolation Function

In solar coordinates:

$$S_{\rho(\beta)} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$S(s) = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} \cos \rho \cos \gamma \\ \cos \rho \sin \gamma \\ \sin \rho \end{bmatrix}$$

Orthogonal matrix to obliquity angle

$$S_{\beta} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

Orthogonal matrix to precession angle

In solar coordinates:

$$S_{\rho(\beta)} S(s)$$
Milankovitch Cycles

Instantaneous Insolation Function

The Earth’s position with respect to the Sun, in the plane of the ecliptic (r, θ)

Instantaneous insolation at the point s on the Earth’s surface:

$$I = \left[\frac{K}{4\pi r^2} \cos \theta \sin \theta \right] S_s(\rho) S_\gamma(\beta) I$$

Doing the math:

$$I(\beta, \rho, r, \theta, \phi, \gamma) = \left[\frac{K}{4\pi r^2} \cos \phi \left(\cos \beta \cos \theta - \cos \gamma \sin \theta \right) \right]$$

Milankovitch Cycles

Annual Insolation Function

Instantaneous insolation:

$$I(\rho, r, \theta, \phi, \gamma) = \frac{K}{4\pi r^2} \cos \phi \left[-\cos (\theta - \rho) \right]$$

Annual average:

$$T(\rho, \phi, \gamma) = \frac{K}{4\pi r^2} \int_0^{2\pi} \cos \phi \left[-\cos (\theta - \rho) \right] d\theta$$

$$T(\phi, \gamma) = \frac{K}{4\pi r^2} \cos \phi \left[-\cos (\theta - \rho) \right] d\theta$$

$P = \text{one year}$

Note the disappearance of ρ (precession angle).

Milankovitch Cycles

Annual Insolation Function

Specific angular momentum: $\Omega = r(t) \frac{d\theta}{dt}$

Annual average:

$$T(\rho, \phi, \gamma) = \frac{K}{4\pi r^2} \int_0^{2\pi} \cos \phi \left[-\cos (\theta - \rho) \right] d\theta$$

$$T(\phi, \gamma) = \frac{K}{4\pi r^2} \cos \phi \left[-\cos (\theta - \rho) \right] d\theta$$

Claim: $I(-\phi) = I(\phi)$

Proof:

$$\int_0^{2\pi} \left(-\sin \beta \cos (-\phi) \cos \gamma - \cos \beta \sin (-\phi) \right) \, d\gamma = 0$$

$$\int_0^{2\pi} \left(-\sin \beta \cos \phi \cos \gamma - \cos \beta \sin \phi \right) \, d\gamma = 0$$

$$\int_0^{2\pi} \left(-\sin \beta \cos \phi \cos \gamma + \cos \beta \sin \phi \right) \, d\gamma = 0$$

$$\int_0^{2\pi} \left(-\sin \beta \cos \phi \cos \gamma - \cos \beta \sin \phi \right) \, d\gamma = 0$$

$$\int_0^{2\pi} \left(-\sin \beta \cos \phi \cos \gamma + \cos \beta \sin \phi \right) \, d\gamma = 0$$
Milankovitch Cycles
Relation to Budyko

\[\frac{dT}{dt} = \left\{ \alpha(T) \right\} \left\{ 1 - \alpha(T) \right\} - \left\{ I(T) \right\} \left\{ H(T) \right\} \]

\[Q(y) = T(y), \text{ where } y = \sin \varphi \]

\[Q(y) = \frac{K}{4 \pi^2 \Omega^2} \int_{y}^{1} \sqrt{\left(\frac{1}{y} - 1 \right) \sin \beta \cos \gamma - y \cos \beta} \, dy \]

The function \(s \) is normalized so that \(\int_{0}^{1} s(y) \, dy = 1 \)

\[Q(s) \int_{s}^{1} s(y) \, dy = \frac{K}{4 \pi^2 \Omega^2} \int_{y}^{1} \sqrt{\left(\frac{1}{y} - 1 \right) \sin \beta \cos \gamma - y \cos \beta} \, dy \]

\[= \frac{K}{4 \pi^2 \Omega^2} \int_{0}^{1} \sqrt{\left(-\sin \beta \cos \gamma \right) \left(1 - y \cos \beta \right)} \, dy \]

Since \(\int_{0}^{1} s(y) \, dy = 2 \) we have \(Q = \frac{K}{8 \pi \Omega} \)

Milankovitch Cycles
Relation to Budyko

Summary

\[Q(y) = T(y) = \frac{K}{4 \pi^2 \Omega^2} \int_{y}^{1} \sqrt{\left(\frac{1}{y} - 1 \right) \sin \beta \cos \gamma - y \cos \beta} \, dy \]

\[Q = \frac{K}{8 \pi \Omega} \]

\[s(y) = \frac{2}{\pi} \int_{y}^{1} \sqrt{\left(\frac{1}{y} - 1 \right) \sin \beta \cos \gamma - y \cos \beta} \, dy \]

Note that \(Q \) depends only on the eccentricity and that \(s \) depends only on the obliquity.

Milankovitch Cycles
Relative Insolation Function

green = quadratic approximation (Tung and North)

mauve = formula using obliquity of 23.5°

red = obliquity of 24.5°

Milankovitch Cycles
Climate Response (Zachos, et al)

A. Power spectrum of climate for the last 4.5 Myr. Note the peaks at 41Kyr and 100 Kyr.

B. Power spectrum of climate for the period 25 Myr bp to 20.5 Myr bp. Note the new peak at 400 Kyr and the "split" peaks at 1200Kyr and 95 Kyr.

Assuming there is a single ice line in the northern hemisphere, located at \(y = \eta \), the fast variables collapse to a one-dimensional center manifold with equation

\[
\frac{\partial \eta}{\partial t} = \epsilon h(\eta)
\]

The function \(h \) for current eccentricity and obliquity.

Once we know the ice line, we can solve for the global mean temperature

\[
\bar{T} = \frac{1}{\beta} \left(\chi(1 - \bar{\sigma}) - A \right)
\]

and the temperature at the pole

\[
T(1) = \frac{1}{\beta + C} \left(\chi(1 - \sigma) - A + C \bar{T} \right)
\]

and see how these vary with the eccentricity and the obliquity.
Milankovitch Cycles

Conclusions

1. Precession doesn’t matter.
2. Obliquity is more important than eccentricity.
3. Polar temperatures vary twice as much as global temperatures.