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Insolation

Insolation = Incoming solar radiation

solar intensity at average distance from the sun: 1368 W/m?2

radius of the Earth: p meters
cross sectional area: Tp? m?
intercepted power: 1368 p? Watts
surface area: 41p? m?

average insolation: 1368/4 W/m2 = 342 W/m?
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Homogeneous Earth

dr

RE-=0(1-a)-(4+BT)

T = global mean temperature (°C)
@ = mean solar input (W/m?)
o = mean albedo
A+BT = outward radiation (linear approximation)
R = heat capacity of Earth’s surface

Tung’s values:

T = global mean temperature (°C)
QO = 343 W/m?
A = 202 W/m?
B = 1.9W/(m?°C)
o =a,=0.32 (water and land)
a =a,=0.62 (ice)
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Homogeneous Earth

R% =0(1-a)—(4+BT)
Equilibrium temperature

T - Q(l—a)—A
“ B

ice free Earth: a = a,, Tm =16.4°C
snowball Earth: a = a,, Tm =-37.7°C

According to Tung, glaciers form if 7< 7, =-10 °C and meltif 7> T

Since 16.4 > -10, no glacier would form on an ice free Earth.
Since -37.7 < -10, no glacier would melt on a snowball Earth.
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Inhomogeneous Earth

R ’Z =0s(y)(1-a(y.n))—-(4+BT)+C(T-T)

Now the annual average surface temperature 7 is a function of
y = sine(latitude).
The albedo a is a function of y and the location # of the ice boundary.
The outward radiation 4+BT is as before.
Heat transport across latitudes is assumed to be linear and is given by
c(T-1)
where C =3.04 W/m?/°C.

The global annual average insolation is Q, with the same value as above,
while s(y) is the relative insolation, normalized to satisfy

s
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Inhomogeneous Earth

RZ =0s(y)(1-a(y.n))~(4+BT)+C(T-T)

The variable y is chosen instead of the latitude, because the global annual
mean temperature is given by
— 1
T(0)=[ T(n)dv
We assume symmetry with respect to the equator, so the variable y takes
on values between 0 and 1.
We assume an ice boundary at y = #, with ice toward the pole and no ice
toward the equator. The albedo is therefore
_Ja, y<n
a(yn) lazv y>n.

Rate of solar energy absorption at y = sine(latitude):

os(v)(2-a(ym)
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Inhomogeneous Earth

or =
Rla—t:Qx(y)(l—a(y,ry))—(/HBT)+C(T—T)
Look for an equilibrium solution having an ice line aty = 5
T=1;(y)
This equilibrium satisfies

(05 (») (1= () ~(4+ BT, () +C(T; -1, () =]

Next step: Solve for the equilibrium temperature profile, assuming we
know the ice boundary.
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Inhomogeneous Earth

[0 () (2= (vm)=(4+BT; () +C(T, -1, () =]

Integrate:
[o(0s () -l (4 BT, (1)) € (T =75 (1)) v =0,

0(1-a(y))-4-BT; =0
M a )= [alom)s ()= [ as () + [ as(r)
=aS(n)+a,(1-5(1)) =2, (2, ) S (),
S5(n)=[,s()ay

Given the ice line 7, the global mean temperature is

(e(-a(n)-4)

and where
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Inhomogeneous Earth

Equilibrium equation (given ice line):
Os(y)(t=a(rv.m)=(4+ BT, (7)) +C (T, - 1; () =0
Global mean temperature:

= _ 1 _
Iy =2(o(-a(n)-4)
Solve for equilibrium temperature profile:

T )= (GO -alyn)-4+CT)

a, y<n
a,, y>1.

(|

where

a(n)=a,~(a, 7(11).":.?()/)61}'
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Inhomogeneous Earth

T (1) =5 (@s()t-aly)- 4+cT;)

Additional assumption: At equilibrium, the average temperature across the
ice boundaryis 7, =-10 °C

. 1 7
1, (1) =5 o(@s(nt-a)-4+CTy)
1 B (s is continuous)
T (n+4) =5 (0s(n)(1- @) - 4+CT))
Ln)+T(n+) 1 .
7= {08 ()1 e) - 4+CT;)
where
_ata,
o, T
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Inhomogeneous Earth

Now we can solve for the ice boundary.

(0s(»)(1-a,)-4+CT;) =T,

B+C
where
7 = 5(o(-a(n)-1)
Therefore,
e ostne-a)-a+S(o-atm)-4) |-

which reduces to

%(x(q)(l—aoyr%(lfaz (e, 70(,)!:.3'(y)dy)]7§771 )

which can be solved numerically for # .
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Inhomogeneous Earth

What about s(y) , the relative insolation function?
2 (% 5
s(y):—zj 117(«)1—;;2sin[ﬂ:os;/fycos[f) dy
7" Jo
where f = obliquity. (Current value is about 23.5°.)

Tung and North’s quadratic approximation:

s(y)=1-0241(3) -1)
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Inhomogeneous Earth

Relative Insolation Function

green = quadratic
approximation (Tung
and North)

mauve = formula using
obliquity of 23.5°

relative insolation
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Inhomogeneous Earth

equilibrium ice boundaries
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Inhomogeneous Earth

equilibrium temperature profiles

30
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Tung conclusions: 10
four equilibrium solutions: & | ————x \
snowball: stable E N
g
large cap: unstable 5 % L
small cap: stable §
ice free: stable -0
-40
-50
0.0 02 04 06 08 1.0

sin(latitude)

——icefree_~—snowball —smallcap ==big cap
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Inhomogeneous Earth Widiasih Result

RE:Qx(y)(l—a(y,n))—(A+BT)+C(T—T)
equilibrium temperature profiles dd—'l] =&(T(n)-T,)
30 This infinite dimension system has a one dimensional attracting
Widiasih conclusions: 20 \ invariant manifold. On the manifold, the system reduces to

10
four equilibrium solutions: Y — \ n = h(;;)
snowball: stable L dt
10

large cap: unstable
ice free: unstable 30 ST A
-40

small cap: stable
o
50
00 02 04 06 08 10 3
sin(latitude)

=icefree ===snowball ===smallcap ===big cap 00 01 02 03 04 05 05 07 08 05 10

temperature (°C)
3
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Inhomogeneous Earth

Paleoclimate Greenhouse Effect

_ ar .
R 05(y)(-a(y.n))~(4+BT)+C(T-T) R =0s(»)(1-a(ym)~(4+BT)+C(T-T)
ot [E—
We can use the information from the Milankovitch cycles as input to re-radiation term
the energy balance model. (includes greenhouse effect)

QO is determined by eccentricity.
s(v) is determined by obliquity.

We can solve for the ice line as a function of eccentricity and
obliquity. Next week ...

Current efforts: Try to incorporate atmospheric CO, into the model.

The result correctly predicts that the dominate signal comes from the

obliquity.

Not correctly predicted: Amplitude of glacial cycles during the last
million years.




