Terrestrial Carbon Sinks:
how can they affect glacial cycles?

UMN Math Climate Seminar
Samantha Oestreicher
October 19, 2011
Contents

• What is a Peatland?
• How do Peatlands Sequester Carbon?
• Developing Peatlands
• Terrestrial CO2 has an impact
• Glacial Cycle Proposal
What is a Peatland?
What is a Peatland?

Lääne-Viru National Park, Finland

http://dolecek.name/travelling/finland/index.htm
What is a Peatland?

Bog “islands” in sedge fen, Upper Red Lake Peatland, perfect “teardrops”, 1961
What is a Peatland?

Central Borneo, Indonesia

http://www.panoramio.com/photo/45821483
What is a Peatland?

Hudson Bay Lowlands
Contents

• What is a Peatland?
• How do Peatlands Sequester Carbon?
• Developing Peatlands
• Terrestrial CO2 has an impact
• Glacial Cycle Proposal
How do peatlands sequester carbon?

Although peatlands developed on “less than 3% of the terrestrial land surface, an estimated 455Pg of Carbon, approximately one-third of the terrestrial carbon pool, is currently stored in peatlands.” (Keller 2004)

In Minnesota peatlands cover 14% of the state but “hold 37% of its stored carbon, the highest of any land or vegetative form” and the Beltrami peatlands are part of this storage. (McAuliffe 2009)
How do peatlands sequester carbon?

Peatlands pull carbon out of the atmosphere to grow in the summer months (as every plant does), but the acidic soil does not allow the peat to decompose.

http://www.uky.edu/KGS/coal/coalform.htm
How do peatlands sequester carbon?

Slide by Clarence Lehman, University of Minnesota
How do peatlands sequester carbon?
Contents

• What is a Peatland?
• How do Peatlands Sequester Carbon?
• Developing Peatlands
• Terrestrial CO2 has an impact
• Glacial Cycle Proposal
Developing Peatlands

Sample peatlands initiated as of 19,650 BP

Slide by Clarence Lehman, University of Minnesota
Developing Peatlands

Sample peatlands initiated as of 16,200 BP

Slide by Clarence Lehman, University of Minnesota
Developing Peatlands

Sample peatlands initiated as of 14,700 BP

Slide by Clarence Lehman, University of Minnesota
Developing Peatlands

Sample peatlands initiated as of 12,000 BP

Slide by Clarence Lehman, University of Minnesota
Developing Peatlands

Sample peatlands initiated as of 8,900 BP

Slide by Clarence Lehman, University of Minnesota
Developing Peatlands

Sample peatlands initiated as of 7,400 BP

Slide by Clarence Lehman, University of Minnesota
Developing Peatlands

Slide by Clarence Lehman, University of Minnesota
Developing Peatlands

Slide by Clarence Lehman, University of Minnesota
• What is a Peatland?
• How do Peatlands Sequester Carbon?
• Developing Peatlands
• Terrestrial CO2 has an impact
• Glacial Cycle Proposal
Terrestrial CO$_2$ has an impact
Terrestrial Effects?

Contents

• What is a Peatland?
• How do Peatlands Sequester Carbon?
• Developing Peatlands
• Terrestrial CO2 has an impact
• Glacial Cycle Proposal
Glacial Cycle Proposal

Then the glaciers begin to advance.

What happens to the forests and the peat?
Glacial Cycle Proposal: Bulldozer or Snowpile?

Zeng 2003, Zeng 2007
Glacial Cycle Proposal
Glacial Cycle Proposal
Glacial Cycle Proposal: Some Remarks

• Hogg’s theory of a finite reservoir of carbon connects well to this theory.

• Every model with a dynamic carbon equation shows oscillation without the presence of Milankovitch forcing.

• Archer suggests that we do not have a complete understanding of all the processes to account for the rise and fall of atmospheric carbon. Perhaps this is part of the solution.

• No one has yet considered the implication of the terrestrially stored carbon with a simple dynamic model. (except PaleoCarbon!) Crafting a model which connects the ice extent with the carbon sink would be a valuable addition to this suite of models.
I’m using the following system of equations

\[
\frac{dT}{dt} = \left(\frac{k}{R} \right) (Q(1 - a_0) - A - (B + H)T + H\overline{T})
\]

\[
\frac{d\eta}{dt} = \epsilon k(T - T_c)
\]

\[
\frac{dC}{dt} = k_3\overline{T} + k_0 + k_1\eta + k_2C + h_\beta(\epsilon \frac{dn}{dt} - .96)
\]

Where

- \(T \) = temperature.
- \(\eta \) = ice line (1 is at the north pole, 0 is at the equator).
- \(C \) = atmospheric \(CO_2 \) in ppm.
- \(k = 60 \times 60 \times 24 \times 365 \) is the seconds per year.
- \(R = 1.7e11 \) is the Joules per \(m^2 \) per deg C.
- \(Q \) = solar insolation.
- \(\overline{T} \) = the average global temperature.
- \(T_c = -10^\circ C \) the degree at which sea water freezes.
- \(a_0 = 0.5(0.32 + 0.62) \), the average of the ice free and ice covered ocean albedo.
- \(h_\beta = 0.5, k_0 = 0.12, k_1 = -0.1204, k_2 = 0.000084, k_3 = -1 \times 10^{-3}. \)
Glacial Cycle Proposal: A Model

I’m using the following system of equations

\[
\frac{dT}{dt} = \left(\frac{k}{R} \right) (Q(1 - a_0) - A - (B + H)T + H\bar{T})
\]

\[
\frac{d\eta}{dt} = \epsilon k (T - T_c)
\]

\[
\frac{dC}{dt} = k_3 \bar{T} + k_0 + k_1 \eta + k_2 C + h_\beta (e^{\frac{dn}{dt}} - .96)
\]

Where

\(T = \) temperature.

\(\eta = \) ice line (1 is at the north pole, 0 is at the equator).

\(C = \) atmospheric \(CO_2 \) in ppm.

\(k = 60 \times 60 \times 24 \times 365 \) is the seconds per year.

\(R = 1.7 \times 10^{11} \) is the Joules per \(m^2 \) per deg C.

\(Q = \) solar insolation.

\(\bar{T} = \) the average global temperature.

\(T_c = -10^\circ C \) the degree at which sea water freezes.

\(a_0 = 0.5(0.32 + 0.62) \), the average of the ice free and ice covered ocean albedo.

\(h_\beta = 0.5, k_0 = 0.12, k_1 = -0.1204, k_2 = 0.000084, k_3 = -1 \times 10^{-3} \).
Glacial Cycle Proposal: A Model
References

