

Energy Balance Models

Insolation

average solar intensity for Earth's orbit: 1368 W/m²

radius of the Earth: ρ meters cross sectional area: $\pi\rho^2~m^2$ intercepted power: 1368 $\pi\rho^2$ Watts surface area: $4\pi\rho^2~m^2$

average insolation: 1368/4 W/m² = 342 W/m²

Energy Balance Models References

Classic Papers:

M. I. Budyko, The effect of solar radiation variation on the climate of the Earth, *Tellus* **21** (1969), 611-619.

W. D. Sellers, A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System, *Journal of Applied Meteorology* **8** (1969), 392-400.

Recent Interpretation:

K.K. Tung, Topics in Mathematical Modeling, Princeton University Press, 2007. (Chapter 8)

Energy Balance Models

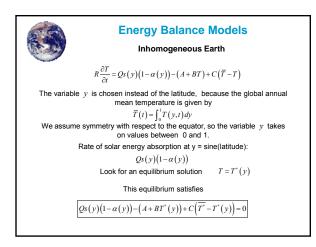
Homogeneous Earth

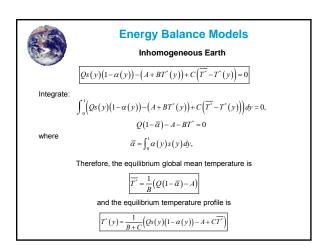
 $R\frac{dT}{dt} = Q(1-\alpha) - (A+BT)$

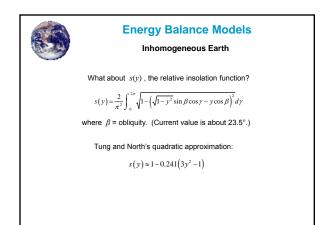
T = global mean temperature (°C) Q = mean solar input (W/m²)

 α = mean albedo A+BT = outward radiation (linear approximation) R = heat capacity of Earth's surface

> Tung's values: T = global mean temperature (°C) Q = 343 W/m² A = 202 W/m² B = 1.9 W/(m² °C)

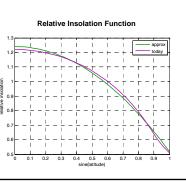

Energy Balance Models
Homogeneous Earth

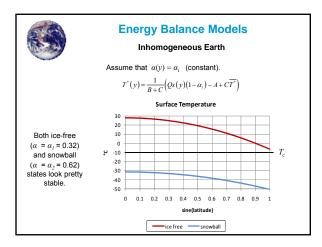

$$R\frac{dT}{dt} = Q(1-\alpha) - (A+BT)$$
Equilibrium temperature

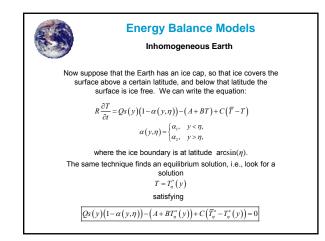

$$T_{eq} = \frac{Q(1-\alpha) - A}{B}$$
ice free Earth: $\alpha = a_{l}$, $T_{eq} = 16.4$ °C
snowball Earth: $\alpha = a_{2}$, $T_{eq} = -37.7$ °C
According to Tung, glaciers form if $T < T_{c} = -10$ °C and melt if $T > T_{c}$.
Since 16.4 > -10, no glacier would form on an ice free Earth.
Since -37.7 < -10, no glacier would melt on a snowball Earth.

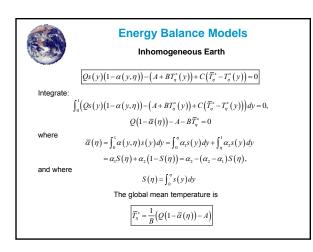
Energy Balance Models
Inhomogeneous Earth

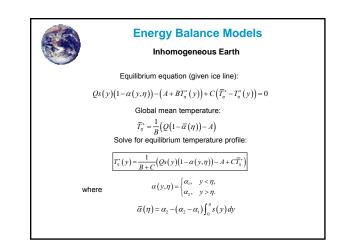
$$R\frac{\partial T}{\partial t} = Qs(y)(1-\alpha(y)) - (A+BT) + C(\overline{T}-T)$$
Now the annual average surface temperature *T* is a function of
y = sine(latitude).
The albedo *a* is a function of *y*.
The albedo *a* is a function of *y*.
The outward radiation *A+BT* is as before.
Heat transport across latitudes is assumed to be linear and is given by
 $C(\overline{T}-T)$
where *C* = 3.04 W/m²/²C.
The global annual average insolation, normalized to satisfy
 $\int_0^1 s(y) dy = 1$




Energy Balance Models


Inhomogeneous Earth


green = quadratic approximation (Tung and North)


mauve = formula using obliquity of 23.5°

