On the Jormungand Global Climate State

Jim Walsh, Visiting Professor
University of Minnesota

Professor, Oberlin College

October 26, 2011

The Jormungand global climate state and implications for Neoproterozoic glaciations
Dorian S. Abbot,¹ Aiko Voigt,² and Daniel Koll¹

Received 7 March 2011; revised 11 June 2011; accepted 20 June 2011; published 17 September 2011.
Geological and paleomagnetic evidence indicate that during at least two Neoproterozoic glacial periods (~630 Ma and ~715 Ma) continental ice sheets flowed into the ocean near the equator.

Glaciers at the equator: Evidence

- Occurrence of glacial debris near sea level in the tropics

Glaciers at the equator: Evidence

- Occurrence of glacial debris near sea level in the tropics

Dated volcanic ash within glacial deposits to 715.5 Ma

- Unusual deposits of iron-rich rock mixed in with glacial debris:
 -- ice cover deprives oceans of oxygen;
 -- dissolved iron expelled from seafloor hot springs accumulates in water;
 -- when ice melts, oceans exposed to atmospheric oxygen
 -- iron (virtually insoluble in presence of oxygen) precipitates out with debris once carried by glaciers

- Iridium (Ir) anomalies:
 -- Ir much more abundant in extra-terrestrial materials;
 -- Ir accumulates on and within the ice and snow, and precipitates out when ice melts;
 -- Ir anomalies used to estimate the duration of the Marinoan glacial episode (~630 Ma) at 12 My

Strong hysteresis vis-à-vis changes in greenhouse gas forcing

- Glacial formations nearly universally overlain with cap carbonates

Chemical breakdown of rocks converts CO$_2$ to bicarbonate, washed into oceans

Chemical reactions in ocean produce carbonate sediments, storing a great deal of carbon

Rapid accumulation of carbonate sediment on seafloor as Neoproterozoic glaciers retreat, later becoming rock

Strong hysteresis vis-à-vis changes in greenhouse gas forcing

- Marinoan cap carbonate sequences possess extremely negative Δ^{17}O values

Neoproterozoic glaciation models

- Snowball Earth

 --J. Kirschvink, 1992¹. *The data are difficult to interpret in any fashion other than that of widespread, equatorial glaciation.*

Neoproterozoic glaciation models

- Snowball Earth

 “In many people’s minds, the hard Snowball is dead.”
 --Michael Arthur, PSU (geochemist)

 “We can get ice on land, it’s the oceans we can’t freeze over… The more sophisticated the model, the less likely you’d get a hard Snowball result.”
 --Mark Chandler, Goddard Institute for Space Studies

 “When the Snowball came up, the [geological] community was very open to it. Now, it’s my impression that 90% of the geological community is quite hostile to the idea.”
 --Philip Allen, Imperial College of London (geologist)

 “[Resistance to the hard Snowball] is really typical of scientific controversy. The problem is the experts reach a quick judgment and dig themselves into a position.”
 --Paul Hoffman, Harvard (retired, geologist)

Neoproterozoic glaciation models

- Snowball Earth -- biological ambiguities

 --evidence that photosynthetic eukaryotes thrived both before and immediately after the Snowball episodes
 (organism whose cells contain complex structures enclosed within membranes)

 --evidence that multiple lineages of sponges may have survived these glaciations
 (more complex marine animals)

Researchers have found a bacterium that is the first photosynthetic organism that doesn’t live off sunlight but from the dim light coming from hydrothermal vents deep within the ocean.

(http://www.asu.edu/feature/includes/summer05/readmore/photosyn.html)
Alternative Neoproterozoic glaciation models

- Slushball, Oasis, Soft-Snowball, Waterbelt

Ice expands over the ocean down to 25-40° latitude, and stabilizes

- Survival of marine animal and photosynthetic life

- Weak hysteresis in global climate models

Qualitatively similar to glaciations of the last few million years, only more extreme?

Alternative Neoproterozoic glaciation models

- Tropical “thin-ice” solution

Ocean is ice-covered, ice ~1 m thick in the tropics

- Penetration of photosynthetically active radiation

- Found in an energy balance climate model\(^1\); requires

 (a) Bare sea ice has high transmissivity & low albedo (0.4-0.5) relative to snow covered sea ice (~0.8)

 (b) Moisture in tropics is exported so that sea ice in tropics is bare.

- Stronger hysteresis in Pollard-Kasting model

- Debate whether the parameter regime in Pollard-Kasting is physically realistic

Not found in global climate model simulations of Neoproterozoic glaciations which use low bare sea ice albedo

Alternative Neoproterozoic glaciation models

- **Albedo**

 --Appropriate value of the albedo for exposed, non-melting ice formed by freezing seawater is 0.47 at temperatures above -23°C

 (at temps below -23°C, NaCl precipitates out which could increase the albedo to 0.71)

 --Appropriate value of the albedo for snow covered ice is 0.81

<table>
<thead>
<tr>
<th>Surface type</th>
<th>Albedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean new H₂O snow</td>
<td>0.85</td>
</tr>
<tr>
<td>Bare sea ice</td>
<td>0.5</td>
</tr>
<tr>
<td>Clean H₂O glacier ice</td>
<td>0.6</td>
</tr>
<tr>
<td>Deep water</td>
<td>0.1</td>
</tr>
<tr>
<td>Sahara Desert sand</td>
<td>0.35</td>
</tr>
<tr>
<td>Martian sand</td>
<td>0.15</td>
</tr>
<tr>
<td>Basalt (any planet)</td>
<td>0.07</td>
</tr>
<tr>
<td>Granite</td>
<td>0.3</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.36</td>
</tr>
<tr>
<td>Grassland</td>
<td>0.2</td>
</tr>
<tr>
<td>Deciduous forest</td>
<td>0.14</td>
</tr>
<tr>
<td>Conifer forest</td>
<td>0.09</td>
</tr>
<tr>
<td>Tundra</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Alternative Neoproterozoic glaciation models

- **Jormungand climate state**

 Ocean is very nearly globally ice-covered, down to 5-15° latitude, with a thin strip of open ocean near the equator

Abbot et al, p. 4

Henry Fuseli (1788)
Alternative Neoproterozoic glaciation models

- **Jormungand climate state**

Ocean is very nearly globally ice-covered, down to 5-15° latitude, with a thin strip of open ocean near the equator

Jormungand climate state: Simulations with global climate models

- NCAR’s Community Atmosphere Model (CAM) v3.1

 Horizontal resolution 2.8° x 2.8°, with 26 vertical levels

 Use **idealized configuration**, including aquaplanet mode with ocean mixed layer of depth 50m, a thermodynamic sea-ice scheme, no ocean heat transport, solar constant 94% of its modern value, zero eccentricity, obliquity 23.5°, 24 hr day

 Bare sea ice albedo ~0.45, snow covered sea ice albedo ~0.79 at temps below -1°C

 At 0°C, bare sea ice albedo ~0.38 and snow covered sea ice albedo ~0.66 to account for formation of melt ponds on ice surface
Jormungand climate state: Simulations with global climate models

- NCAR’s Community Atmosphere Model (CAM) v3.1

![Graph](image1)

Red diamonds: ice-free initial state
Blue circles: Jormungand initial state
Green squares: Snowball initial state

(Abbot et al, p. 3)

Jormungand climate state: Simulations with global climate models

- NCAR’s Community Atmosphere Model (CAM) v3.1

![Graph](image2)

Figure 3. Annual and zonal mean surface air temperature for the ice-free state (red dashed), Jormungand state (blue), and Snowball state (black dash-dotted) with $pCO_2 = 5000$ ppm.

Figure 4. Annual and zonal mean precipitation minus evaporation for the ice-free state (red dashed) and the Jormungand state (blue) with $pCO_2 = 5000$ ppm.

(Abbot et al, p. 4)
Jormungand climate state: Atmospheric dynamics

![Diagram of Jormungand climate state]

(Abbot et al, p. 6)

Jormungand climate state: Simulations with global climate models

- Max Planck Institute’s atmospheric model v5.3.02p

 Horizontal resolution 3.75° x 3.75°, with 19 vertical levels

 Does not produce Jormungand state when run in idealized configuration: does not keep track of snow that falls on sea ice

 Modify: sea ice has CAM’s bare sea ice albedo equatorward of 20° latitude and CAM’s snow albedo poleward of 20° latitude

(Abbot et al, p. 7)
Jormungand climate state: Simple energy balance climate models

Budyko-Sellers Model: At equilibrium

\[\frac{Q}{4} S(x)(1 - \alpha(T(x))) = A + BT(x) + C(T(x) - \bar{T}) \]

\(Q \) solar constant
\(x \in [0, 1] \) sine of latitude (0-equator, 1-north pole)
\(S(x) \) meridional distribution of insolation, \(\int_0^1 S(x)dx = 1 \)
\(T \) surface temperature
\(\bar{T} \) average surface temperature
\(\alpha \) albedo
\(A + BT \) linearization of OLWR
\(C(T - \bar{T}) \) meridional heat transport

\[\alpha(T(x)) = \begin{cases}
\alpha_1, & T > T_s \\
\alpha_s, & T = T_s \\
\alpha_2, & T < T_s
\end{cases} \]

\(T_s \) temperature at the ice line
\(\alpha_s = \frac{\alpha_1 + \alpha_2}{2} \)

\[\frac{\partial \alpha_s}{\partial x_s} = 0 \]

\(\alpha \)

Budyko-Sellers Model

(1) \[\frac{Q}{4} S(x)(1 - \alpha(T(x))) = A + BT(x) + C(T(x) - \bar{T}) \]

Global mean energy balance: integrate from \(x=0 \) to \(x=1 \)

(2) \[\frac{Q}{4}(1 - \alpha_p(x_s)) = A + B\bar{T} \quad x_s = \text{sine of the ice latitude} \]

\[\alpha_p(x_s) = \int_0^1 \alpha(x)S(x)dx = \alpha_1 \int_0^{x_s} S(x)dx + \alpha_2 \int_{x_s}^1 S(x)dx \]

Plug \(x_s \) into (1):

(3) \[\frac{Q}{4}S(x_s)(1 - \alpha_s) = A + BT_s + C(T_s - \bar{T}) \]

Solve (2) for \(\bar{T} \), plug into (3)

\[A(x_s) = \frac{B}{B+C} \left(\frac{Q}{4} \left(S(x_s)(1 - \alpha_s) + \frac{C}{B}(1 - \alpha_p(x_s)) \right) - (B + C)T_s \right) \]

Change in radiative forcing \(\Delta A = A_0 - A \), \(A_0 \) present value

Budyko-Sellers Model: Linear stability analysis \(\Delta A = A_0 - A \)

\[A(x_s) = \frac{B}{B+C} \left(\frac{Q}{4} \left(S(x_s)(1 - \alpha_s) + \frac{C}{B}(1 - \alpha_p(x_s)) \right) - (B + C)T_s \right) \]

\[A(x_s + \delta x_s) = \frac{B}{B+C} \left(\frac{Q}{4} \left(S(x_s + \delta x_s)(1 - \alpha_s) + \frac{C}{B}(1 - \alpha_p(x_s + \delta x_s)) \right) - (B + C)T_s \right) \]

Linear approximation: \(f(x + \delta x) \approx f(x) + f'(x)\delta x \)

\[\frac{\delta x_s}{\delta(\Delta A)} = \frac{\frac{4}{Q}(B + C)}{C\frac{\partial S}{\partial x_s} - B\frac{\partial S}{\partial x_s}(1 - \alpha_s)} \]

\(Q = 1285 \text{ W m}^{-2}, \quad A_0 = 210 \text{ W m}^{-2}, \)
\(B = 1.5 \text{ W m}^{-2} \text{ K}^{-1}, \quad C = 2.5B, \quad \alpha_1 = 0.3, \)
\(\alpha_2 = 0.6, \quad T_s = -10^\circ \text{C}, \quad \delta_2 = -0.482 \)
Jormungand climate state: Simple energy balance climate models

Modified Budyko-Sellers Model: At equilibrium

\[
\frac{Q}{4} S(x)(1 - \alpha(T(x))) = A + B T(x) + C(T(x) - \bar{T})
\]

\[
\frac{\partial \alpha_s}{\partial x_s} = 0
\]

\[
\alpha_2 = \alpha_2(x) = \alpha_2^i + \left(\frac{\alpha_2^s - \alpha_2^i}{2} \right) \left(1 + \tanh \left(\frac{x - x_i}{\Delta x_i} \right) \right)
\]
Modified Budyko-Sellers Model:

\[\Delta A = A_0 - A \]

\[
A(x_s) = \frac{B}{B + C} \left(\frac{Q}{4} \left(S(x_s)(1 - \alpha_s(x_s)) + \frac{C}{B} (1 - \alpha_p(x_s)) \right) - (B + C)T_s \right)
\]

\[
\alpha_p(x_s) = \int_0^1 \alpha(x) S(x) \, dx = \alpha_1 \int_0^{x_s} S(x) \, dx + \int_{x_s}^1 \alpha_2(x) S(x) \, dx
\]

\[
\frac{\delta x_s}{\delta (\Delta A)} = \frac{4Q(B+C)}{BS \frac{\partial \alpha_s}{\partial x_s} + C \frac{\partial \alpha_p}{\partial x_s} - B \frac{\partial S}{\partial x_s} (1 - \alpha_s)}
\]

\(\alpha_1 = 0.35, \alpha_2^i = 0.45, \alpha_2 = 0.8, x_i = 0.35 \)

\(\Delta x_i = 0.04, T_s = 0^\circ C, C = 1.5B \)

CAM Simulation

Modified Budyko-Sellers Model

(Abbot et al, p. 3)
Jormungand climate state: Accessibility

![Figure 12](image)

Figure 12. As in Figure 11, with $\Delta F = 0.45$ (black) and with $\Delta F = 0.65$ (red). In the latter case the Jormungand state is not “accessible” if the radiative forcing (ΔA) is increased and decreased through a hysteresis loop between the warm state and the Snowball state.

(Abbot et al, p. 10)

Jormungand climate state & Neoproterozoic glaciations: Recap

High CO$_2$ initially to balance reduce insolation

For some reason there is a reduction of one or more greenhouse gases, and ice latitude decreases

Reach first bifurcation, and ice latitude rushes toward the equator

At 20-30$^\circ$ atmospheric circulation ensures the sea ice is generally bare, lowering ice-albedo feedback, climate enters Jormungand state

Very cold, dry, ice sheets cover large areas of continents: silicate weathering greatly reduced, so climate never enters Snowball state

Strong hysteresis, CO$_2$ build up over millions of years, high enough eventually to melt ice, return violently to ice-free state, depositing cap carbonates

![Schematic Diagram of Jormungand Global Climate State](image)
Jormungand climate state & Neoproterozoic glaciations

Coupled global climate model simulations described in recently submitted work appears to further support the idea that the Jormungand state can exist with a dynamical ocean and realistic continents\(^1\)

The Jormungand state represents a potential model for Neoproterozoic glaciations, although further study of this issue is needed.
