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Introduction

Goal:
To analyse the possible average mean temperature profiles for a
non-symmetric planet with no ice.

Application:
To analyse Earth during the Eocene (approx 50 mys). How big of an affect
does eccentricity and obliquity have the cycles and power spectrums of an
ice free earth?

Process:
We will use the average mean temperature that can be calculated at
equilibrium for a non-symmetric Budyko model.
We’ll talk about non-symmetric first Budyko first.
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Finding Equilibrium

As calculated by several smart folks before me we have the following
equilibrium solution:

T ∗ =
1

B + C
(Q(e)s(y , β)(1− α(y))− A + CT ) (1)

We will be using the following definitions:

s(y , β) = 1 + s2(β)p2(y)
s2(β) = 15

6 ∗ (−2 + 3 sin2 β)
p2(y) = 1

2(3y2 − 1)

Where e is eccentricity, β is obliquity, Q(e) is the insolation as a function
of eccentricity, α is the albedo function and s(y) is the distribution of
Q(e) across all latitudes. Thus we need

∫
s(y)dy = 1. A,B,C ∈ R and

found through modelling and data fitting.
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Finding Equilibrium

Under the usual construction of Budyko,∫ 1

0
s(y)dy = 1.

We will be using the same s(y) but in this case y ∈ (−1, 1). Thus we can
either think about redefining a measure dµ = 1

2dy or we may think about

redefining s(y) to be half it’s original value and
∫ 1
−1 T = T .

Thus when we consider equation 1, we see that we must integrate both
sides against latitude and solve for T

∗
. For now we will assume that α is

constant. We arrive at:

T
∗

=
Q(1− α)− A

B

where α = 1
2

∫ 1
−1 s(y)α(y)dy . This is the equation we will use to find the

average equilibrium temperature means.
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The α = 0 case

We begin with α = 0. So we have painted the Earth black and made it
completely absorbing. For Q = 343, A = 202, and B = 1.9 which implies
that T∗ ≈ 74.2C . If I apply a dynamic solver to the equations, then I can
see the actual temperature profile over time. I can then take the average
of each of the time steps to see what happens in the long run to the
globally averaged temperature.
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The α = 0 case

We can now view the equilibrium temperature as function of obliquity, β,
and eccentricity, e.

T
∗

=
Q(e)(1− α(β))− A

B
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The α = 30% case

For Budyko integration in Matlab with a constant albedo function of 0.3,
we use an ice-free, symmetric Earth to arrive at the following dynamic
solution.
Red line = initial.
Blue line= “equilibrium”solution.
Yellow = intermediary temperature profiles.
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The α = 30% case

For α = 0.3, Q = 343, A = 202, and B = 1.9 we have that

T
∗ ≈ 20.05C .

When we use matlab to compute T for the last computed temperature
profile (at time step 100, 000) we have

T 100,000 ≈ 19.97C .
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The α = 30% case

Here are the T
∗

values over the last 5 mya.
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Lat vs Land Albedo

We can view α = α(y). Then α = 1
2

∫ 1
−1 s(y)α(y)dy . integrates the y out

of the equation, leaving α = α(β) because s(y) also depends on β. Using
an approximation of this graph of α in the T

∗
equation we find...
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Lat vs Land Albedo
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Top: Land vs Lat Albedo Function.
Bottom: Constant 30% Albedo Function.

It’s like a Highlights magazine! Can you find the discrepancies?
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Power Spectrums

This is the constant 30% albedo (α = 0.3) power spectrum.
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Power Spectrums

This is the Lat vs Land power spectrum.
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Fun Comparison

Top: Red = Land vs Lat. Blue = 30%. Bottom: Land vs Lat - 30%.
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Bringing out Obliquity

First consider an “ICEY” scenario.
Northern most and southern most 15% of the world is covered in ice (50%
albedo) and the rest is water (10% albedo).
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Bringing out Obliquity

Here is the power signal for ICEY poles scenario.

The ICEY scenario sees eccentricity signal most prominently.
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Beginning out Obliquity

Next consider the “DONUT” scenario.
90N to 60N at 10% albedo.
60N to 30N at 40% albedo.
30N to 30S at 50% albedo.
30S to 60S at 40% albedo.
60S to 90S at 10% albedo.
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Bringing out Obliquity

Here is the power spectrum for the DONUT scenario.

The DONUS scenario sees obliquity most prominently.
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Conclusions

The power spectrum of the global average temperature of an ice-free
planet can follow either the eccentricity or the obliquity signal.

The power spectrum for the Eocene (with the land masses approximately
where they were at that time) follows the obliquity.

It is possible for ancient times, when land was clustered near the equator,
to imagine a strong obliquity signal due to land mass albedo.
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The End

Thanks!
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