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Past Climate

100,000 year cycles
Abrupt warming, gradual cooling

Possibly due to large scale fluctuations in global
oceanic circulation
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Past Climate

1,500 year cycles

Dansgaard-Oeschger (D-O) Events
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Past Climate

1,500 year cycles
Abrupt warming, gradual cooling

Fluctuations most pronounced in the North Atlantic

Dansgaard-Oeschger (D-O) Events
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Past Climate

Quasi-periodic ice-sheet disintegration

Heinrich Events
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Past Climate

Quasi-periodic ice-sheet disintegration

Large amounts of freshwater dumped into the
North Atlantic

Probable cause for abrupt shifts in ocean
circulation?

Heinrich Events
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Past Climate

Origin of the 1,500 year cycles? (external or internal?)
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Past Climate

Origin of the 1,500 year cycles? (external or internal?)

Pattern of fluctuations between 50 kyr and 30 kyr
before present - How / Why?
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The Freshwater Hypothesis

Freshwater from ‘purged’ice sheets
destabilize circulation

Leads to disruption in heat transport to
northern latitudes

Ganopolski and Rahmstorf (2001)
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Other Proposed Mechanisms

Solar Influence?

Oceanic Tidal Cycle?

Internal Oceanic Mechanisms?

Combination of two known solar cycles of 87 and 210
years
(Braun et al., 2005)

However, comparison of proxy records for the climate
and solar influence do not reveal a correlation
(Muscheler and Beer, 2006)

1,800 year periodic variations in oceanic tides caused
by resonances in the orbits of Earth and Moon
(Keeling and Whorf, 2000)

However, there is a period mismatch

Several models produce fluctuations in the circulation
due to anomalies in polar sea surface salinity

(Winton and Sarachik, 1993; Sakai and Peltier, 1995;
Haarsma et al. 2001; de Verdiére et al. 2006)

However, the period of fluctuations are heavily
dependent on polar sea surface conditions




Questions

Origin of the 1,500 year cycles, pattern
Driven by external (astronomical) or internal (oceanic) mechanisms?

How are the D-O events connected to Heinrich events?




A Simple Dynamical Model
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A Simple Dynamical Model

Goal:

To examine the interaction between
circulation (deep water formation)
and sea ice




A Simple Dynamical Model

Spatial Layout
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Spatial Layout
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Spatial Layout

Subpolar
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Spatial Layout

Top Mixed Layer




A Simple Dynamical Model

Spatial Layout

Bottom (Interior) Layer




A Simple Dynamical Model

Spatial Layout

Gildor and Tziperman (2001)

750 Sea-ice

de Verdiére et. al. (2005)




A Simple Dynamical Model

Forcing

Applied Atmospheric Temperatures

Applied Surface Salinities
Sea-ice
+1




A Simple Dynamical Model

Physical Processes

1>0 —» Surface pole-bound flow (Thermal)

Y1 <0 —» Surface equator-bound flow (Haline)
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A Simple Dynamical Model

Physical Processes

Pressure driven circulation

1>0 —» Surface pole-bound flow (Thermal)

Y1 <0 —» Surface equator-bound flow (Haline)

Sea ice grows on the polar box
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A Simple Dynamical Model

Governing Equations

Heat exchange with atmosphere

miCpTi =

m;S;

Q
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A Simple Dynamical Model

Governing Equations

miCpTi Qi + ,O()prbi,jT]' + POCpDi,jTj + CO(TZ) + Qice

miSi it pogbi,]-S]- + poDi,]'S]' + CO(SZ) + S()B

Evaporation/Precipitation (salinity forcing)




A Simple Dynamical Model

Governing Equations

miCpyTi = Qi +|poCpi, Tj|+ poCyD; ;T + Co(T;) + Qice

Advective transport of heat and salt

miSi = &+ pogbi,]-S]- + poDi,]'S]' + CO(SZ) + S()B




A Simple Dynamical Model

Governing Equations

Qi + poCpti /T; +|00CpD; i Ti|+ Co(T;) + Qice

Diffusive transport of heat and salt
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A Simple Dynamical Model

Governing Equations

Qi + ,O()prbi,jT]' + POCpDi,jTj + CO(TZ)

Convection
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A Simple Dynamical Model

Governing Equations

Enthalpy of formation/melting

Qi + poCpti /T + poCypD; i T; + Co(T;) +|Qice

&+ pogbi,]-S]- + IO()DI',]'S]' + CO(SZ) + SOB




A Simple Dynamical Model

Governing Equations

Qi + poCpti /T + poCyD; i T; + Co(T;) + Qice

&+ ‘OOI]DI',]'S]' + pODi,]'S]' + CO(SZ) + SQB

Brine rejection




A Simple Dynamical Model

Governing Equations

Qi + poCpti /T + poCyD; i T; + Co(T;) + Qice

&+ POﬁbi,]’S]’ + pODZ‘,]'S]' + CO(SZ) + SQB
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Phase-space Trajectories of Advective Fluxes

Sea Ice




Phase-space Trajectories of Advective Fluxes
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Phase-space Trajectories of Advective Fluxes (several initial states)
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Solutions

Oscillation Periods: Relative Strength of Thermal to Salinity Forcing

Periods between 200 and 4,000 years

Scale with &/n

Depends on the rate of build up
and eradication of instabilities

~~
9))]
—
4o
)
>
-
o
C
oy
Y
&)
~

e o o
'o’o ° °
w o o%0
']
’.~. (XX 4

XX
"

"iee?

-0.015 -0.014 -0.013 -0.012 -0.011
€/n




Solutions

Oscillation Periods: Geometry

Larger polar volume increases effective heat capacity of the system

Periods get longer with volume (heat capacity)

Since geometry is invariant, it can produce a persistent period
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Animation

Model Year: 1150.00
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Mechanism of Oscillations

Insulating effect
Brine rejection

Heat exchanges from formation / melting
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Mechanism of Oscillations

B Qe Oscillations

0

Insulating effect
Brine rejection

Heat exchanges from formation / melting

Insulating effect is key to
oscillations in this system
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Mechanism of Oscillations

Insulation Only (case V)
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Mechanism of Oscillations

Advective Flux
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Mechanism of Oscillations

Advective Flux

Heat Loss to Atmosphere




Mechanism of Oscillations

Advective Flux

™~

Vertical Instability




Mechanism of Oscillations

Advective Flux

Start of Convection




Mechanism of Oscillations

Large heat loss from the polar surface ocean during sea ice retreats cool
the water, making it more dense and creating conditions for convection




Glacial Freshwater Scenario

Ice sheet growth and decay

Applied Atmospheric Temperatures
Increased tropical (global) evaporation

Increased freshwater anomalies at
high North Atlantic latitudes due

) Applied Surface Salinities
to ice sheet runoffs

+1




Glacial Freshwater Scenario: Ice Sheet Growth / Disintegration

Ice sheet growth and decay

Increased tropical (global) evaporation

Increased freshwater anomalies at
high North Atlantic latitudes due
to ice sheet runoffs
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Glacial Freshwater Scenario: Ice Sheet Growth / Disintegration

Ice sheet growth and decay

S

Increased tropical (global) evaporation

Increased freshwater anomalies at
high North Atlantic latitudes due
to ice sheet runoffs
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Observation and Model
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Observation and Model
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A Cartoon of the Ice Sheet Cycles and D-O events

Ice sheet growth phase
Sea ice max
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A Cartoon of the Ice Sheet Cycles and D-O events

Sea ice / AMOC oscillations
Heinrich Event




Animated Cartoon




Animated Cartoon
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Conclusion

Sea Ice initiates oscillations of the circulation

Period of oscillations tied to geometry of the
system, hence robust

Ice sheet growth/decay cycles produced
observed D-O patterns

Weak (and therefore unstable) overturning circulation
during glacial periods

Freshwater anomalies could have triggered state
changes

In addition to freshwater, insolation variations can also
trigger abrupt state changes in the overturning
circulation, especially during early glacial periods

Sea ice may also serve as a similar trigger for glacial-
interglacial cycles (Gildor and Tziperman, 2001)




Future Work



Carbon Storage in the Ocean: Dr. Irina Marinov, UPenn

Glacial - Interglacial Cycles

Interglacial Circulation
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Carbon Storage in the Ocean: Dr. Irina Marinov, UPenn

Glacial - Interglacial Cycles

Glacial Circulation

Stable stratification

)

Large Sea Ice Extent
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Gildor ,Tziperman, Toggweiler (2002)




Reduction to Stommel: Andrew Roberts, UNC-Chapel Hill

Adding deep boxes and Sea ice to Stommel’s 2 box model

Equatorial
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