
Periodic Fluctuations in Deep Water Formation 
Due to Sea Ice

Raj Saha

Mathematics and Climate Research Network, NSF
Bowdoin College, Department of Mathematics
Department of Physics & Astronomy, UNC Chapel Hill



�1.0 �0.8 �0.6 �0.4 �0.2 0.0
�6

�5

�4

�3

�2

Millions of Years

�
�∆18 O

�‰��B
en

th
ic

100,000 year cycles

Abrupt warming, gradual cooling

Possibly due to large scale !uctuations in global 
oceanic circulation

Past Climate

Zachos et al.  2001



�1.0 �0.8 �0.6 �0.4 �0.2 0.0
�6

�5

�4

�3

�2

Millions of Years

�
�∆18 O

�‰��B
en

th
ic

100,000 year cycles

Abrupt warming, gradual cooling

Possibly due to large scale !uctuations in global 
oceanic circulation

Past Climate

Zachos et al.  2001



�1.0 �0.8 �0.6 �0.4 �0.2 0.0
�6

�5

�4

�3

�2

Millions of Years

�
�∆18 O

�‰��B
en

th
ic

100,000 year cycles

Abrupt warming, gradual cooling

Possibly due to large scale !uctuations in global 
oceanic circulation

Past Climate

Zachos et al.  2001



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Past Climate

NGRIP



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Dansgaard-Oeschger (D-O) Events

1,500 year cycles

Past Climate

NGRIP



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Dansgaard-Oeschger (D-O) Events

1,500 year cycles

Abrupt warming, gradual cooling

Past Climate

NGRIP



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Dansgaard-Oeschger (D-O) Events

1,500 year cycles

Abrupt warming, gradual cooling

Fluctuations most pronounced in the North Atlantic

Past Climate

NGRIP



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Past Climate



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Quasi-periodic ice-sheet disintegration

Heinrich Events

Past Climate



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Quasi-periodic ice-sheet disintegration

Large amounts of freshwater dumped into the 
North Atlantic

Heinrich Events

Past Climate



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Quasi-periodic ice-sheet disintegration

Large amounts of freshwater dumped into the 
North Atlantic

Heinrich Events

Past Climate



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Quasi-periodic ice-sheet disintegration

Large amounts of freshwater dumped into the 
North Atlantic

Heinrich Events

Past Climate



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Quasi-periodic ice-sheet disintegration

Large amounts of freshwater dumped into the 
North Atlantic

Probable cause for abrupt shifts in ocean 
circulation?

Heinrich Events

Past Climate



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Past Climate



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Origin of the 1,500 year cycles? (external or internal?)

Past Climate



�100 �80 �60 �40 �20 0
�46

�44

�42

�40

�38

�36

�34

Kilo Years Before Present

∆1
8
O
�‰�N

G
R
IP

Origin of the 1,500 year cycles? (external or internal?)

Pattern of !uctuations between 50 kyr and 30 kyr 
before present - How / Why?

Past Climate



The Freshwater Hypothesis
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Other Proposed Mechanisms

Solar In!uence? Combination of two known solar cycles of 87 and 210 
years
(Braun et al., 2005)

However, comparison of proxy records for the climate 
and solar in!uence do not reveal a correlation
(Muscheler and Beer, 2006)

Oceanic Tidal Cycle? 1,800 year periodic variations in oceanic tides caused 
by resonances in the orbits of Earth and Moon
(Keeling and Whorf, 2000)

However, there is a period mismatch

Internal Oceanic Mechanisms? Several models produce !uctuations in the circulation  
due to anomalies in polar sea surface salinity
(Winton and Sarachik, 1993; Sakai and Peltier, 1995; 
Haarsma et al. 2001; de Verdiére et al. 2006)

However, the period of !uctuations are heavily 
dependent on polar sea surface conditions



Questions

Origin of the 1,500 year cycles, pattern

Driven by external (astronomical) or internal (oceanic) mechanisms?

How are the D-O events connected to Heinrich events?



A Simple Dynamical Model

Goal:



A Simple Dynamical Model

Goal:

To examine the interaction between 
circulation (deep water formation) 
and sea ice
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A Simple Dynamical Model

Physical Processes
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A Simple Dynamical Model

Governing Equations

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second
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Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second

17

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by
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Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by
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miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)
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A Simple Dynamical Model

Governing Equations

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second
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The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second

17

Advective transport of heat and salt



A Simple Dynamical Model

Governing Equations

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second
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The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second

17

Di"usive transport of heat and salt



A Simple Dynamical Model

Governing Equations

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second
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The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second

17

Convection



A Simple Dynamical Model

Governing Equations

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second

17

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second

17

Enthalpy of formation/melting



A Simple Dynamical Model

Governing Equations

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second
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The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second

17

Brine rejection



A Simple Dynamical Model

Governing Equations

The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second
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The net volume of ice at a given time-step is spread over the entire polar box with a

thickness dice. If the entire polar box is covered, the thickness is adjusted from the total

volume of ice and surface area.

The formation of sea-ice also affects salinity of the surface layer through brine rejection.

This becomes an additional forcing term in equation (3.31) for the polar box and is given

by

Ḃ = ρ0
Q̇ice

ρiceLf
(3.29)

where ρice is the density of ice and Lf the latent heat of fusion of ice.

G overning Equations

The governing equations describing the rates in change of temperature and salinity are

given by

miCpṪi = Q̇i + ρ0Cpψi, jTj + ρ0CpDi, jTj + Co(Ti) + Q̇ice (3.30)

miṠi = ξi + ρ0ψi, jSj + ρ0Di, jSj + Co(Si) + S0Ḃ (3.31)

Here Q̇i is the rate of heat transfer to the surface layers due to thermal forcing and is given

by

Q̇i = λ(Γi − Ti)
�

fice

�γice

dice
− 1
�
+ 1
�
Ai + (−LeεA1) (3.32)

where λ is the heat exchange coefficient between atmosphere and ocean, fice is the fraction

of polar surface area covered by sea ice, γ the heat permeability (insulation) parameter,

and dice the prescribed sea ice thickness. Unless otherwise stated, γ = 0, i.e. sea ice is

assumed to be a perfect insulator. The advective volume transport terms, (ψi, j) are all

related to the surface flows defined in Equations (3.11, 3.12, 3.13).

The net change in heat and salt contents of a box in one integrating time-step is the sum

of all exchanges between it and its neighbors. Integration is carried out using a second

17
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Phase-space Trajectories of Advective Fluxes
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Phase-space Trajectories of Advective Fluxes
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γ Ḃ Q̇ice Oscillations

I 0 0 0 0
II 0 0 1 0

III 0 1 0 0
IV 0 1 1 0
V 1 0 0 1

VI 1 0 1 1
VII 1 1 0 1

VIII 1 1 1 1

Table 3.2: The three direct effects of sea ice, insulation (γ), brine rejection (Ḃ) and heat

enthalpies of formation (Q̇ice) are systematically switched on and off to determine their

influence. Oscillations appear only when insulation is on, and for values of heat perme-

ability coefficient, γ < 0.7.

Figure 3.22: Evolution of surface and

bottom densities comparison between

the two limiting cases described in Ta-

ble 3.2. In case IV (dashed), both brine

rejection and sea ice heat exchanges are

switched on, and insulation is off. Case

V (solid) has only insulation switched

on. Oscillations occur in the latter case.

to return to haline modes.

60
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Mechanism of Oscillations
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Advective Flux
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Heat Loss to Atmosphere

Advective Flux

Mechanism of Oscillations



Vertical Instability

Advective Flux

Mechanism of Oscillations



Start of Convection

Advective Flux

Mechanism of Oscillations



Large heat loss from the polar surface ocean during sea ice retreats cool 
the water, making it more dense and creating conditions for convection

Mechanism of Oscillations



Glacial Freshwater Scenario

Ice sheet growth and decay

Increased tropical (global) evaporation

Increased freshwater anomalies at 
high North Atlantic latitudes due 
to ice sheet runo"s
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A Cartoon of the Ice Sheet Cycles and D-O events
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Sea Ice initiates oscillations of the circulation

Period of oscillations tied to geometry of the 
system, hence robust

Ice sheet growth/decay cycles produced 
observed D-O patterns

Weak (and therefore unstable) overturning circulation 
during glacial periods

Freshwater anomalies could have triggered state 
changes

In addition to freshwater, insolation variations can also 
trigger abrupt state changes in the overturning 
circulation, especially during early glacial periods

Sea ice may also serve as a similar trigger for glacial-
interglacial cycles (Gildor and Tziperman, 2001)

Conclusion
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