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Glacial Cycles

Temperatures in the Cenozoic Era
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Hansen, et al, Target atmospheric CO2: Where should humanity aim? Open Atmos. Sci. J. 2 (2008)
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180 in Foraminifera Fossils During the Past 1.0 Myr
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Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed
benthic d180 records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.
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180 in Foraminifera Fossils During the Past 4.5 Myr
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Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed
benthic d180 records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.
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Recent (last 400 Kyr) Temperature Cycles
Vostok Ice Core Data
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J.R. Petit, et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok

ice core, Antarctica, Nature 399, 429-436.




Glacial Cycles

What Causes Glacial Cycles?

Widely Accepted Hypothesis

The glacial cycles are driven by the variations in the Earth’s orbit
(Milankovitch Cycles), causing a variation in incoming solar
radiation (insolation).

This hypothesis is widely accepted, but also widely regarded as
insufficient to explain the observations.

The additional hypothesis is that there are feedback and
triggering mechanisms that amplify the Milankovitch cycles.
What these mechanisms are and how they work are not fully

understood.
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Milankovitch Cycles
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Eccentricity
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Precession Index

precession index
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Summer Solstice 65°N
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Glacial Cycles

Climate Response, Hays, et al
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Three different temperature proxies from sea sediment data.

Hays, et al, Science 194 (1976), p. 1125
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Milankovitch vs. Climate
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Hays with Modern Data
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Hays, et al, Summary
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Hays’ explanation is that there are nonlinear feedbacks.

Are there other explanations?

Hays, et al, Science 194 (1976), p. 1127
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Cenozoic Era

Zachos, et al, Science 292 (2001), p. 689
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Temperatures in the Cenozoic Era
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Climate Response (Zachos, et al)

A Bandwidin for B0O lags on 4999 values at At = 1.0 80% level CI
17.01
12.18

7.347

Power spectrum of =
climate for the last 4.5 g 2.516
Myr. Note the peaks

at 41Kyr and 100 Kyr.

0.100

Zachos, et al, Science 292 (2001), p. 689

Glacial Cycles

Zachos, et al, Summary
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Nonlinear effects?

Other explanations?

Zachos, et al, Science 292 (2001), p. 689
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Why such a small precession contribution?

Incoming Solar Radiation (Insolation), averaged over the entire
globe and over a full year, depends only on eccentricity e, not on
either obliquity or precession.

Insolation as a function of latitude, averaged over a full year, depends on
eccentricity e and obliquity /, but not precession.

1=0(e)s(1.8)

where

s(p.p)= %J:”\/l— (cosgsin Bcosg—singcos B’ cosddd

@ = latitude
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Zachos Summary (Revised)

If we assume that glaciation depends on annual average insolation
instead of insolation at summer solstice, then forcing and response

are aligned.
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180 in Foraminifera Fossils During the Past 5.3 Myr

Lisiecki-Raymo Stack
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Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic d180

records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.
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Last Million Years is Different
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Glacial Cycles

What's up with the Last Million Years?

100,000 Year Problem: Why did the eccentricity signal become so
dominant during the last million years?
400,000 Year Problem: If the last million years is dominated by
eccentricity. what happened to the 400,000 year cycle?
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What's up with the last million years?
Did eccentricity reassert itself? Or something else?

Glacial Cycles
CO, as Feedback

Over the Last 420,000 Years
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Heat Balance
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Hogg's Model
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Andrew McC. Hogg, "Glacial cycles and carbon dioxide: A model," G
Letters 35 (2008).
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Hogg's Model
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Glacial Cycles

Hogg's Model

Hogg's model shows how the carbon cycle can act as a
feedback amplifying and modifying the insolation forcing, but
the forcing is somewhat artificial, and the triggering mechanism
is difficult to justify.

What if the 100,000 year glacial cycle is not driven by
eccentricity, but is a natural oscillation of the Earth’s climate?

Saltzman and Maasch suggested just such a model.
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Salzman-Maasch Model

Milankovitch forcing

globalice mass —> X =-X-Y—uM (1)
atmospheric CO, —> Y =—pZ+rY +sZ* - Z*Y
deep ocean temperature —> Z =—q(X +Z)

Barry Salzman and Kirk A. Maasch, "A Low-Order Dynamical Model of Global Climatic Variability Over the
Full Pleistocene," Journal of Geophysical Research 95 (D2), 1955-1963 (1990)
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Salzman-Maasch Model
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Salzman-Maasch Model
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Salzman-Maasch Model

The Salzman-Maasch model shows how the carbon cycle and
the ocean currents can interact to produce unforced oscillations
with periods of about 100,000 years. The same model with
slightly different parameters can exhibit stationary behavior. By
forcing the model with Milankovitch cycles and by slowly
varying the parameters over the last two million years, they can
produce a bifurcation from small oscillations tracking the
Milankovitch cycles to large oscillations with a dominant
100,000 year period.

Seems like a nice idea, but it is not widely accepted as the
explanation, and it has some problems.
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Salzman-Maasch Model

The Hopf bifurcation explanation seems to have two
serious problems (“cosmic coincidences”).

1. Why does the intrinsic period of the glacial cycles
just happen to have the same period as the
eccentricity cycles?

2. Why does the phase of the glacial cycles agree
with the phase of the obliquity and eccentricity
cycles?

Ask Samantha.
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Huybers’ Analysis of Deglaciations
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Red dots: deglaciations.

Peter Huybers, *Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity
pacing, and the Pleistocene progression,” Quaternary Science Reviews 26, 37-55 (2007)
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Huybers’ Analysis of Deglaciations

V,: ice volume at time ¢
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t: Kyr
V': chosen so that 7 = 1.
&': mean zero and variance one
a=0.05
b=126
c=20
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Huybers’ Analysis of Deglaciations
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Huybers’ Analysis of Deglaciations

Huybers’ model produces the decline in temperature and the
increase in period and amplitude of the glacial cycles, but it
depends heavily on an unspecified decline in the sensitivity of
the triggering mechanism over last two million years.

Revised in 2011.
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Huybers’ 2011 Analysis of Deglaciations

The deglaciations are triggered by the following
forcing function.

F =a"esin(p, - g)+(1-a)*p,
where
e, = eccentricity
p, = precession angle
3, = obliquity
a and ¢ are parameters.
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Huybers’ 2011 Analysis of Deglaciations
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T,=110-25F, 7 rate of increase of ice volume

F,=a"esin(p, - ¢) + (L-a)** 3,
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Huybers’ 2011 Analysis of Deglaciations
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Questions

1. Did eccentricity play any role during the last million years?
Is the apparent 100 kyr cycle an artifact (Huybers)?

Is it an intrinsic cycle in the climate system that coincidentally has
a period of 100,000 years (Maasch and Saltzman)?

2. Is the CO, feedback sufficient to explain the increasing amplitude
and period of the glacial cycles during the last million years, i.e., is
it the mechanism behind the Huybers model.

3. Where does the atmospheric CO, go during the glacial maxima?
The ocean? The land?

4. What will be the effect of the anthropogenic CO,?
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Abe-Ouchi et al Ice Sheet Model

The larger the ice sheet, the more unstable it becomes, and the
more sensitive it is to insolation. Once it begins to retreat,
feedbacks cause a rapid pace.

Ayako Abe-Ouchi, Fuyuki Saito, Kenji Kawamura, Maureen E.
Raymo, Jun’ichi Okuno, Kunio Takahashi & Heinz Blatter,
“Insolation-driven 100,000-year glacial cycles and hysteresis of ice-
sheet volume,” Nature 500 (2013), 190-193. doi:10.1038/nature12374

Animation available on Nature Web site:
http://www.nature.com/nature/journal/v500/n7461/fig_
tab/naturel2374_SV1.html
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