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Motivation

Carbon cycle includes exchange of CO2 at the ocean-atmosphere
interface

Ocean absorbs carbon from the air (as CO2), where it is a nutrient for
floating plankton doing photosynthesis

Carbon enters plankton. Perhaps a bigger fish eats the plankton.
Either way, it ends up in the deep ocean as dead organisms.

Surface layer of the ocean takes up almost half of the CO2 produced
by humans (maybe... and will it continue...)
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Some chemistry:

CO2 is soluble in water

Dissolved CO2 reacts with water to form carbonic acid. This reaction
is reversible.

Whether the ocean surface takes up carbon or releases it depends on
the CO2 flux

F = k(pCOoc
2 − pCOat

2 ),

(k is transfer coefficient). Negative means CO2 is being taken up by
the ocean.

Once CO2 is in the upper layer of the ocean, there are two
mechanisms to transport it to the ocean’s interior:

1 Solubility pump via mixing ocean currents

2 Biological pump:
F Begins with uptake of CO2 by phytoplankton

F Organic carbon sinks as dead organisms or feces.

F There are processes to return the organic carbon to dissolved CO2, but
it happens more slowly, hence the biological pump is a carbon sink.
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Algal Blooms
Phytoplankton need two things: light and high levels of nutrients

Phytoplankon do well in coastal upwelling zones

Particularly in freshwater, algal blooms occur from pollution runoff
and are harmful to local ecosystem

Typically only involve one (or a few) types of a phytoplankton
species, and may discolor water

Algal blooms are an indicator of climate change
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Algal Bloom Model
Proposed by Klausmeier and Litchman (2001)

Reduced Nutrient-Phytoplankton-Zooplankton (NPZ) model

Assume: phytoplankton move passively, uniformly distributed
horizontally, constant nutrients, death rate

Lambert-Beer law for light

Once plankton is dead, it sinks out of the system
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Algal Bloom Model

Advection-diffusion equation for P(z , t):

∂P

∂t
= Dv

∂2P

∂z2
− (w + ws)

∂P

∂z
+ (gf (I )− i(P))P

BC’s: Phytoplankton does not move across the top or bottom surface of
the ocean:

Dv
∂P

∂z
− (w + ws)P = 0, z = 0, L.

Light availability: Lambert-Beer Law

f (I )(z , t) = I0 exp

(
−Kbgz − k

∫ z

0
P(y , t) dy

)
.
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Algal Bloom Model
Ebert, Arrayás, Temme and Sommeijer (2001): Rescale and
nondimensionalize

t ′ = K 2
bgDv t, z ′ = Kbgz , ,P ′(z ′, t ′) = rP(z , t).

New advection-diffusion equation for P(z , t):

∂P

∂t
=
∂2P

∂z2
− C

∂P

∂z
+ A (j(P)− B)P

with BCs
∂P

∂z
− CP = 0, z = 0, L.

with

J(P)(z , t) = exp

(
−z −

∫ z

0
P(y , t) dy

)
.

Parameters

0 < A <∞
0 < B < 1
C ∈ R
0 < L <∞.
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Existence and uniqueness
Consider the steady-state equation

ρ′′ − Cρ′ + A
(
e−z−

∫ z
0 ρ(y) dy − B

)
ρ = 0 (1)

with conditions[
ρ′ − Cρ

]
z=0,L

= 0, ρ(z) ≥ 0 for all 0 ≤ z ≤ L. (2)

Results:

(Ebert, Arrayás, Temme and Sommeijer, 2001) There exists an
L∗ > 0 such that the BVP has a nontrivial solution for all L < L∗.

(Huisman, Arrayás, Ebert, Sommeijer, 2002) solved equation
numerically to show that under certain light conditions, the
phytoplankton develops a stationary density profile.

(Jones, M.) If L has a nontrivial solution, then it must be unique.
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Proof of uniqueness

Steady state equation:

ρ′′ − Cρ′ + A
(
e−z−

∫ z
0 ρ(y) dy − B

)
ρ = 0

Let
r(z) = e−z−

∫ z
0 ρ(y) dy (3)

so that
r ′(z) = (−1− ρ(z)) r(z). (4)

Facts:

1 r(0) = 1

2 r(z) is monotone decreasing

3 For an individual solution, we may now view the boundaries
0 ≤ z ≤ L as moving from r = 1 to r = r(L) ∈ (0, 1).
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Proof of uniqueness

Equation:

ρ′′ − Cρ′ + A
(
e−z−

∫ z
0 ρ(y) dy − B

)
ρ = 0

New expression:
r(z) = e−z−

∫ z
0 ρ(y) dy

Let q = ρ′ to attain the following first-order system:

ρ′ = q (5)

q′ = Cq − A(r − B)ρ (6)

r ′ = −(1 + ρ)r , ′ =
d

dz
(7)

BCs: [
ρ′ − Cρ

]
z=0,L

= 0 =⇒ [q − Cρ]r=1,r(L) = 0
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Proof of uniqueness
More about the BCs

BCs: [
ρ′ − Cρ

]
z=0,L

= 0 =⇒ [q − Cρ]r=1,r(L) = 0

How to visualize this:

Picture (ρ, q, r)-system, 0 ≤ r ≤ 1

ρ′ − Cρ = 0 at z = 0 and z = L is equivalent to a solution lying on
the line q = Cρ on the planes {r = 1} and when r = r(L)

For any solution, use a to refer to the initial condition of that solution
so that (ρ(0, a), q(0, a), r(0, a)) = (a,Ca, 1).

q

r
ρ
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Proof of uniqueness

We can then define a curve formed by solutions to (5)-(7) at a chosen
value of x0 ∈ [0, L] by

γ(z0) = {(ρ(z0, a), q(z0, a), r(z0, a)) : a > 0} . (8)

Showing uniqueness is equivalent to showing that the curve γ(L) intersects
the plane {q = Cρ} only once.

q

r
ρ
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Proof of uniqueness

Tangent vector field along γ(z):

(δρ(z , α), δq(z , α), δr(z , α)) :=

(
∂ρ(z , a)

∂a

∣∣∣∣
a=α

,
∂q(z , a)

∂a

∣∣∣∣
a=α

,
∂r(z , a)

∂a

∣∣∣∣
a=α

)
.

The vector field (δρ, δq, δr) satisfies the equations of variations:

δρ′ = δq

δq′ = C δq − A(r − B) δρ− Aρ δr

δr ′ = −r δρ− (1 + ρ) δr .

Parametrize γ(0) as γ(0) = {(a,Ca, 1) : a > 0}, so initial condition for
(δρ, δq, δr) is (1,C , 0).
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Proof of uniqueness
Let ζ(z , a) be the third component of the cross-product

(ρ(z , a), q(z , a), r(z , a))× (δρ(z , a), δq(z , a), δr(z , a)),

i.e.
ζ(z , a) = ρ δq − q δρ|(z,a).

Its derivative along a solution with respect to z is

ζ ′(z , a) = Cζ(z , a)− Aρ2(z , a) δr(z , a). (9)

Linear differential equation with ζ(0) = 0:

ζ(z , a) = −AeCz
∫ z

0
e−Csρ2(s, a) δr(s, a) ds. (10)

Does ζ(z , a) have a fixed sign? The sign of ζ is determined by δr :

if for all s ∈ (0, z) we know δr(s, a) > 0, then ζ(z , a) < 0

if for all s ∈ (0, z) we know δr(s, a) < 0, then ζ(z , a) > 0.
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Proof of uniqueness

Equation
δr ′ = −r δρ− (1 + ρ) δr (11)

is linear and thus

δr(z , a) = −e−
∫ z
0 (1+ρ(y ,a)) dy

∫ z

0
e
∫ s
0 (1+ρ(y ,a)) dy r(s, a) δρ(s, a) ds. (12)

Since r(z) = e−z−
∫ z
0 ρ(y) dy , this is

δr(z , a) = −r(z , a)

∫ z

0
δρ(s, a) ds. (13)

The sign of δr depends on the behavior of δρ in a manner similar to that
of ζ and δr .
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Proof of uniqueness
Facts:

δρ′ = δq

δρ(0, a) = 1.

If δρ(z0, a) = 0 (z0 is the first zero for ρ), then

δr(z0, a) = −r(z0, a)

∫ z0

0
δρ(s, a) ds < 0. (14)

Since δq(z0, a) ≤ 0, for ζ(z0, a):

ρ δq − q δρ|z=z0
= −AeCz0

∫ z0

0
e−Csρ2(s, a) δr(s, a) ds

ρ(z0, a) δq(z0, a) = −AeCz0
∫ z0

0
e−Csρ2(s, a) δr(s, a) ds

(−) = (+)

So for all z ∈ (0, L), δρ(z , a) > 0. So δr(z , a) < 0 for all z ∈ (0, L), and
consequently ζ(z , a) > 0.
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Proof of uniqueness

q

r ρ

For all a ∈ (0, α), we see ρ′ < Cρ when z = L, and for all a > α, ρ′ > Cρ
when z = L. (Parameter values are A = 10, B = 0.5, C = 1 and L = 0.1.)
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Proof of uniqueness

Figure: Three plots showing γ(L) and q = Cp for three different values of C .

This result on ζ(z , a) allows us to control how solutions intersect the plane
{q = Cp}. In particular, projecting in the (p, q)-plane, the tangent vector
(δρ(z , a), δq(z , a)) must always point “up” to the region q > Cp. Hence
for any choice of L, the curve γ(L) can intersect {q = Cp} transversely
with the curve moving from {q < Cp} to {q > Cp} as the choice of initial
condition a increases. Such an intersection is necessarily unique.
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Conclusion: if we know the depth L, then we know there is only one
possible density profile.

Desired conclusion: if we know the surface density, we know the depth.
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Thank you
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