Circle Maps Inspired By Glacial Cycles

Jonathan Hahn

September 2014
$\delta^{18} \mathrm{O}$ content of the last 2 Ma

Huybers' Discrete Model

$$
\begin{aligned}
& V_{t}=V_{t-1}+\eta_{t} \quad \text { and if } V_{t} \geq T_{t} \text { terminate } \\
& T_{t}=a t+b-c \theta_{t}^{\prime}
\end{aligned}
$$

Upon termination, linearly reset V to 0 over 10 Ka
V : ice volume
T : deglaciation threshold
θ^{\prime} : scaled obliquity
η : ice volume growth rate

Huybers, P. Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression. Quaternary Science Reviews. 2007.

A deterministic run of the model

Discrete Model with Combined Forcing

$$
\begin{aligned}
V_{t} & =V_{t-1}+\eta_{t} \quad \text { and if } V_{t} \geq T_{t} \text { terminate } \\
T_{t} & =110-25 \mathcal{F}_{t} \\
\mathcal{F}_{t} & =\alpha^{1 / 2} e_{t} \sin \left(\omega_{t}-\phi\right)+(1-\alpha)^{1 / 2} \epsilon_{t}
\end{aligned}
$$

Huybers, P. Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature. 2011.

Discrete model with combined forcing

Wunsch and Huybers' original model

$$
\begin{aligned}
& V_{t}=V_{t-1}+\eta_{t} \quad \text { and if } V_{t} \geq T_{t} \text { terminate } \\
& T_{t}=100-\theta_{t}^{\prime}
\end{aligned}
$$

Huybers, P. and Wunsch, C. Obliquity pacing of the late Pleistocene glacial terminations. Nature. 2005.

Deterministic and stochastic models with obliquity forcing

Idealized Model

Discrete model:

$$
\begin{aligned}
V_{t_{i}} & =V_{t_{i-1}}+\eta_{t_{i}} \Delta_{t} \quad \text { and if } V_{t_{i}} \geq T_{t_{i}} \text { terminate } \\
T_{t_{i}} & =a t_{i}+b+c \sin \left(2 \pi t_{i}\right) \\
\Delta_{t} & =t_{i}-t_{i-1}
\end{aligned}
$$

Continuous model: let $\Delta_{t} \rightarrow 0$.
Let $V_{t_{0}}(t)$ be the volume with initial condition $V_{t_{0}}\left(t_{0}\right)=0$.

Numerical Simulations

Numerical Simulations

Reduction to a Periodic Map

Suppose the threshold $T(x)$ is periodic: $T(x+1)=T(x)$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the map sending a termination time t to the next termination time.

$$
g(t)=\min \left\{t^{\prime}>t: V_{t}\left(t^{\prime}\right)=0\right\}
$$

Then $g(t)$ is also periodic: $g(t+1)=g(t)$.

Reduction to a Periodic Map

The map g can be smooth, continuous, or discontinuous.

Circle Maps

A function $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is a circle map.
Let $\pi: \mathbb{R} \rightarrow \mathbb{S}^{1}$ be defined as

$$
\pi(x)=e^{2 \pi i x}
$$

A lift of a circle map is a map $F: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\pi \circ F=f \circ \pi
$$

Circle Maps

- There are infinitely many lifts of any circle map f.
- If f is continuous, any two continuous lifts differ by an integer.
- We say a continuous circle map f is orientation preserving if a lift F has the property $F(x) \leq F(y)$ if $x<y$.

Rotation Number

Choose a basepoint $x \in \mathbb{S}^{1}$ and $x^{\prime} \in \mathbb{R}$ with $\pi\left(x^{\prime}\right)=x$. Then for f with lift F define

$$
\rho(x, f)=\rho\left(x^{\prime}, F\right)=\lim _{n \rightarrow \infty} \frac{F^{n}\left(x^{\prime}\right)-x^{\prime}}{n}
$$

Rotation Number

Choose a basepoint $x \in \mathbb{S}^{1}$ and $x^{\prime} \in \mathbb{R}$ with $\pi\left(x^{\prime}\right)=x$. Then for f with lift F define

$$
\rho(x, f)=\rho\left(x^{\prime}, F\right)=\lim _{n \rightarrow \infty} \frac{F^{n}\left(x^{\prime}\right)-x^{\prime}}{n}
$$

"Average" amount of rotation from one iteration of f

Rotation Number

Define the rotation set

$$
\rho(f)=\left\{\rho(x, f): x \in \mathbb{S}^{1}\right\}
$$

Rotation Number

Define the rotation set

$$
\rho(f)=\left\{\rho(x, f): x \in \mathbb{S}^{1}\right\}
$$

- If f is a diffeomorphism and orientation-preserving, $\rho(f)$ exists uniquely. (Poincaré)

Rotation Number

Define the rotation set

$$
\rho(f)=\left\{\rho(x, f): x \in \mathbb{S}^{1}\right\}
$$

- If f is a diffeomorphism and orientation-preserving, $\rho(f)$ exists uniquely. (Poincaré)
- If f is degree one and continuous, $\rho(f)$ is an interval $\left[\rho_{1}(f), \rho_{2}(f)\right]$. (Ito, 1981)

Rotation Number

- For a degree one, continuous circle map f,

$$
p / q \in \rho(f) \Leftrightarrow \text { There exists point } z \text { with } f^{q}(z)=z
$$

Rotation Number

- For a degree one, continuous circle map f,

$$
p / q \in \rho(f) \Leftrightarrow \text { There exists point } z \text { with } f^{q}(z)=z
$$

- If $\rho(f)$ is irrational, F is semi-conjugate to a rigid rotation.

$$
\begin{array}{ll}
\mathbb{R} \xrightarrow{F} & \mathbb{R} \\
\downarrow & \\
\downarrow & \\
\mathbb{R} \xrightarrow{R_{\rho(F)}} & \mathbb{R}
\end{array}
$$

Canonical family of circle maps

$$
f(x)=x+b+\frac{\omega}{2 \pi} \sin (2 \pi x) \bmod 1
$$

Arnold Tongues for canonical maps

Boyland, P. Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals, Comm. Math. Phys. 106 (1986), 353-381.

Discontinuous Rotations

What holds true for discontinuous rotations?

Discontinuous Rotations

What holds true for discontinuous rotations?

- Existence and uniqueness if f is orientation preserving. (Brette, 2003; Kozaykin, 2005)
- If there exists point z with $f^{q}(z)=z, p / q \in \rho(f)$

Discontinuous Rotations

What holds true for discontinuous rotations?

- Existence and uniqueness if f is orientation preserving. (Brette, 2003; Kozaykin, 2005)
- If there exists point z with $f^{q}(z)=z, p / q \in \rho(f)$
- However, $p / q \in \rho(f)$ does not imply the existence of a periodic point: $f(x)=(1 / 2) x+1 / 2$

Relations on \mathbb{S}^{1}

A relation on \mathbb{S}^{1} is a subset of $\mathbb{S}^{1} \times \mathbb{S}^{1}$. The analogue of an iteration is an orbit of a relation f : $\left\{\ldots x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right\}$ such that $\left(x_{i}, x_{i+1}\right) \in f$.

We may be able to prove more general statements about relations on \mathbb{S}^{1}.

Relations on \mathbb{S}^{1}

