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Huybers' Discrete Model

Vi = Vi1+n:  andif Vy > T; terminate
T: = at+b—cb,

Upon termination, linearly reset V to 0 over 10 Ka

V . ice volume
T : deglaciation threshold
0’ : scaled obliquity

n . ice volume growth rate

Huybers, P. Glacial variability over the last two million years: an extended

depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression.

Quaternary Science Reviews. 2007.
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A deterministic run of the model
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Discrete Model with Combined Forcing

Vt = Vt—]. + Nt and if Vt > Tt terminate
T: = 110—25F;
Fe = oPesin(we — @) + (1 — a) /%,

Huybers, P. Combined obliquity and precession pacing of late Pleistocene

deglaciations. Nature. 2011.
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Discrete model with combined forcing
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Wunsch and Huybers' original model

Vi = Vi1+n:  andif Vy > T; terminate
T: = 100—6,

Huybers, P. and Wunsch, C. Obliquity pacing of the late Pleistocene glacial

terminations. Nature. 2005.
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Deterministic and stochastic models with obliquity forcing
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|dealized Model

Discrete model:

Vt,‘ = Vtifl + nt,'At and if Vti > Tt,- terminate
Ty, = atj+ b+ csin(2nt;)
Ay = tj—tia

Continuous model: let A; — 0.

Let V4, (t) be the volume with initial condition V4, (to) = 0.
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Numerical Simulations

2.5
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Numerical Simulations

1.2
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Reduction to a Periodic Map

Suppose the threshold T(x) is periodic: T(x + 1) = T(x).

Let g : R — R be the map sending a termination time t to the
next termination time.

g(t) = min{t' > t: Vi(t') = 0}

Then g(t) is also periodic: g(t + 1) = g(t).
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Reduction to a Periodic Map

, continuous, or discontinuous.
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The map g can be smooth
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Circle Maps

A function f : St — St is a circle map.

Let 7 : R — S! be defined as
7T(X) — e27rix
A lift of a circle map is a map F : R — R such that

moF=fom

14 /29



Circle Maps

e There are infinitely many lifts of any circle map f.
e If f is continuous, any two continuous lifts differ by an integer.

e We say a continuous circle map f is orientation preserving if a
lift F has the property F(x) < F(y) if x < y.
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Rotation Number

Choose a basepoint x € St and x’ € R with 7(x') = x.

Then for f with lift F define

o(x, F) = p(x0, F) = lim L) =X

n—oo n
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Rotation Number

Choose a basepoint x € St and x’ € R with 7(x') = x.
Then for f with lift F define

o(x, F) = p(x0, F) = lim L) =X

n—oo n

" Average" amount of rotation from one iteration of f
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Rotation Number

Define the rotation set

p(F) = {p(x,f) : x € S'}
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Rotation Number

Define the rotation set

p(f) = {p(x,f) : x €51}

e If f is a diffeomorphism and orientation-preserving, p(f) exists
uniquely. (Poincaré)
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Rotation Number

Define the rotation set

p(f) = {p(x,f) : x €51}

e If f is a diffeomorphism and orientation-preserving, p(f) exists
uniquely. (Poincaré)

e If f is degree one and continuous, p(f) is an interval
[o1(F), p2(£)]. (Ito, 1981)
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Rotation Number

e For a degree one, continuous circle map f,

p/q € p(f) < There exists point z with f9(z) = z
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Rotation Number

e For a degree one, continuous circle map f,

p/q € p(f) < There exists point z with f9(z) = z

e If p(f) is irrational, F is semi-conjugate to a rigid rotation.
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Canonical family of circle maps

f(x)=x+b+ ; sin(2rx) mod 1
T

a
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Arnold Tongues for canonical maps

Irrational
numbers

Boyland, P. Bifurcations of circle maps: Arnol'd tongues, bistability and rotation

intervals, Comm. Math. Phys. 106 (1986), 353-381.
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Discontinuous Rotations

What holds true for discontinuous rotations?
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Discontinuous Rotations

What holds true for discontinuous rotations?

e Existence and uniqueness if f is orientation preserving.

(Brette, 2003; Kozaykin, 2005)
o If there exists point z with f9(z) =z, p/q € p(f)
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Discontinuous Rotations

What holds true for discontinuous rotations?

e Existence and uniqueness if f is orientation preserving.
(Brette, 2003; Kozaykin, 2005)

e If there exists point z with f9(z) = z, p/q € p(f)

e However, p/q € p(f) does not imply the existence of a
periodic point: f(x) = (1/2)x+1/2
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Relations on S!

A relation on S! is a subset of S x SI.
The analogue of an iteration is an orbit of a relation f:
{..x_1, X0, X1, X2, ... } such that (x;, xj+1) € f.

We may be able to prove more general statements about relations
on St.
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Relations on S!

f2
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