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δ18O content of the last 2Ma
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Huybers’ Discrete Model

Vt = Vt−1 + ηt and if Vt ≥ Tt terminate

Tt = at + b − cθ′t

Upon termination, linearly reset V to 0 over 10 Ka

V : ice volume

T : deglaciation threshold

θ′ : scaled obliquity

η : ice volume growth rate

Huybers, P. Glacial variability over the last two million years: an extended

depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression.

Quaternary Science Reviews. 2007.
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A deterministic run of the model
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Discrete Model with Combined Forcing

Vt = Vt−1 + ηt and if Vt ≥ Tt terminate

Tt = 110− 25Ft

Ft = α1/2et sin(ωt − φ) + (1− α)1/2εt

Huybers, P. Combined obliquity and precession pacing of late Pleistocene

deglaciations. Nature. 2011.
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Discrete model with combined forcing
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Wunsch and Huybers’ original model

Vt = Vt−1 + ηt and if Vt ≥ Tt terminate

Tt = 100− θ′t

Huybers, P. and Wunsch, C. Obliquity pacing of the late Pleistocene glacial

terminations. Nature. 2005.
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Deterministic and stochastic models with obliquity forcing
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Idealized Model

Discrete model:

Vti = Vti−1 + ηti ∆t and if Vti ≥ Tti terminate

Tti = ati + b + c sin(2πti )

∆t = ti − ti−1

Continuous model: let ∆t → 0.

Let Vt0(t) be the volume with initial condition Vt0(t0) = 0.
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Numerical Simulations
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Numerical Simulations

11 / 29



Reduction to a Periodic Map

Suppose the threshold T (x) is periodic: T (x + 1) = T (x).

Let g : R→ R be the map sending a termination time t to the
next termination time.

g(t) = min{t ′ > t : Vt(t
′) = 0}

Then g(t) is also periodic: g(t + 1) = g(t).
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Reduction to a Periodic Map

The map g can be smooth, continuous, or discontinuous.
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Circle Maps

A function f : S1 → S1 is a circle map.

Let π : R→ S1 be defined as

π(x) = e2πix

A lift of a circle map is a map F : R→ R such that

π ◦ F = f ◦ π
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Circle Maps

• There are infinitely many lifts of any circle map f .

• If f is continuous, any two continuous lifts differ by an integer.

• We say a continuous circle map f is orientation preserving if a
lift F has the property F (x) ≤ F (y) if x < y .
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Rotation Number

Choose a basepoint x ∈ S1 and x ′ ∈ R with π(x ′) = x .
Then for f with lift F define

ρ(x , f ) = ρ(x ′,F ) = lim
n→∞

F n(x ′)− x ′

n

”Average” amount of rotation from one iteration of f
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Rotation Number

Define the rotation set

ρ(f ) = {ρ(x , f ) : x ∈ S1}

• If f is a diffeomorphism and orientation-preserving, ρ(f ) exists
uniquely. (Poincaré)

• If f is degree one and continuous, ρ(f ) is an interval
[ρ1(f ), ρ2(f )]. (Ito, 1981)
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Rotation Number

• For a degree one, continuous circle map f ,

p/q ∈ ρ(f )⇔ There exists point z with f q(z) = z

• If ρ(f ) is irrational, F is semi-conjugate to a rigid rotation.

R F−−−−→ RyH

yH

R
Rρ(F )−−−−→ R
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Canonical family of circle maps

f (x) = x + b +
ω

2π
sin(2πx) mod 1
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Arnold Tongues for canonical maps

Boyland, P. Bifurcations of circle maps: Arnol’d tongues, bistability and rotation

intervals, Comm. Math. Phys. 106 (1986), 353-381.
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Discontinuous Rotations

What holds true for discontinuous rotations?

• Existence and uniqueness if f is orientation preserving.
(Brette, 2003; Kozaykin, 2005)

• If there exists point z with f q(z) = z , p/q ∈ ρ(f )

• However, p/q ∈ ρ(f ) does not imply the existence of a
periodic point: f (x) = (1/2)x + 1/2
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Relations on S1

A relation on S1 is a subset of S1 × S1.
The analogue of an iteration is an orbit of a relation f :

{...x−1, x0, x1, x2, ...} such that (xi , xi+1) ∈ f .

We may be able to prove more general statements about relations
on S1.
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Relations on S1

f f 2
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