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Box Models

Stommel, Henry. ”Thermohaline convection with two stable regimes of flow.” Tellus 13.2 (1961):
224-230.

Temperature and salinity control the flow of water between boxes.
Essentially all practical ocean circulation models are box models

of varying complexity.



Generalized
Hopf

Bifurcation
in a

Nonsmooth
Ocean

Circulation
Model

Julie Leifeld

Box Models: so what?

• Bistability

• Bistability with noise induced transitions

• Oscillations

• Oscillations moderated by noise

• Relaxation oscillation and canards

• Box models are in the purview of dynamical systems
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Welander’s Model

The Model:

Ṫ = kT (TA − T )− k(ρ)T

Ṡ = kS(SA − S)− k(ρ)S
ρ = −αT + γS

The nondimensionalized model:

Ṫ = 1− T − k(ρ)T

Ṡ = β(1− S)− k(ρ)S
ρ = −αT + S

k(ρ) =
1

2

[
tanh

(
1

a
(ρ− ε)

)
+ 1

]
Welander, Pierre. ”A simple heat-salt
oscillator.” Dynamics of Atmospheres and
Oceans 6.4 (1982): 233-242.
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Welander’s Model: so what?

Welander’s model demonstrated oscillations in a 1 box convection
model, which was new and exciting.
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The Smooth Model

For certain values of ε, a periodic orbit exists. A Hopf Bifurcation
occurs near ε = 0.

“
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Some Nonsmooth Considerations

There is an intuitive way to piece together dynamics in a
nonsmooth model with a line of discontinuity, which was

originally formulated by Filippov.

Di Bernardo, Mario, et al. ”Bifurcations in nonsmooth dynamical systems.” SIAM review
(2008): 629-701.

Taking a convex combination of the systems on either side of the
discontinuity gives a way to find a flow in the sliding region.
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Some Nonsmooth Considerations

The set up:
Consider the system

ẋ = f(x, λ)

with discontinuity boundary given defined by the zero set of a
scalar function h(x).

λ =

{
1 h(x) > 0
−1 h(x) < 0

On h(x) = 0, λ ∈ [−1, 1]

The standard Filippov formulation would be

ẋ =
1

2
(1 + λ)f+(x) +

1

2
(1− λ)f−(x)
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Some Nonsmooth Considerations

A sliding solution is defined as follows:

If

0 = f(x, λ) · ∇h(x)
0 = h(x)

can be solved for some λ∗ ∈ [−1, 1], then ẋ = f(x, λ∗) defines a
sliding solution of the system.

Note that no sliding solutions of the Filippov formulation exist in
crossing regions.
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Nonlinear Sliding (and why we
don’t like it)

Filippov (maybe) proved in his book that a nonsmooth limit of a
monotonic function does not have nonlinear sliding.
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The Nonsmooth Model

The nonsmooth Welander model
is

Ṫ = 1− T − k(ρ)T

Ṡ = β(1− S)− k(ρ)S
ρ = −αT + S

where k(ρ) =

{
1 ρ > ε
0 ρ < ε

Welander, Pierre. ”A simple heat-salt
oscillator.” Dynamics of Atmospheres and
Oceans 6.4 (1982): 233-242.
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The Nonsmooth Model

The model is linear on each side of the discontinuity. It has two
virtual equilibria.

Welander, Pierre. ”A simple heat-salt oscillator.” Dynamics of Atmospheres and Oceans 6.4
(1982): 233-242.

An unstable sliding region takes the role of the unstable
equilibrium in the smooth system.
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The Nonsmooth Model

In the smooth model, a Hopf bifurcation was seen when ε varied.
In the nonsmooth model, the sliding region transitions from

unstable to stable as ε = 0.

The point at which the tangencies collide was studied by Filippov,
and is called a fused focus.
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The Fused Focus

Filippov gave conditions on the stability of the fused focus.
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Persistence of a Hopf Bifurcation

We see a Hopf bifurcation which corresponds to this transition of
the sliding region.
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Considerations for a normal form

In the smooth Hopf bifurcation, one looks for eigenvalues passing
through the imaginary axis.

In a nonsmooth system, eigenvalues don’t even make sense.
Instead we look for changing stability in the sliding region.
To find a normal form, one must worry about topological

equivalence in nonsmooth systems, and the possible importance of
sliding solutions in that equivalence.

Most of the high powered dynamical systems theorems don’t
apply.
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Summary

• A Hopf bifurcation persists as Welander’s smooth model
limits to a nonsmooth system

• The Hopf bifurcation in the nonsmooth system is reliant on
interactions with the discontinuity boundary, and is not due
to the changing stability of an equilibrium

• The generalized bifurcation is however analogous to a
bifurcation in a smooth system
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