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Motivation

Welander’s Model has a nonsmooth Hopf bifurcation.
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A Recap

There is an intuitive way to piece together dynamics in a
nonsmooth model with a line of discontinuity, which was

originally formulated by Filippov.

Di Bernardo, Mario, et al. ”Bifurcations in nonsmooth dynamical systems.” SIAM review
(2008): 629-701.

Taking a convex combination of the systems on either side of the
discontinuity gives a way to find a flow in the sliding region.
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A Recap

The set up:
Consider the system

ẋ = f(x, λ)

with discontinuity boundary given defined by the zero set of a
scalar function h(x).

λ =

{
1 h(x) > 0
0 h(x) < 0

On h(x) = 0, λ ∈ [0, 1]

The standard Filippov formulation would be

ẋ = λf+(x) + (1− λ)f−(x)
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A Recap
A sliding solution is defined as follows:

If

0 = f(x, λ) · ∇h(x)
0 = h(x)

can be solved for some λ∗ ∈ [0, 1], then ẋ = f(x, λ∗) defines a
sliding solution of the system.

Note that no sliding solutions of the Filippov formulation exist in
crossing regions.
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Nonlinear Sliding

One doesn’t need to define the vector field on the boundary in
terms of the convex combination. If f(x, λ) is already defined in

terms of a nonsmooth parameter λ, then solving

0 = f(x, λ) · ∇h(x)
0 = h(x)

for λ ∈ [0, 1] gives nonlinear sliding solutions. They don’t need to
be unique.
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Nonlinear Sliding

ẋ =

(
1

2− λ− x

)
− 2(1− λ2)

(
1
1

)

f+ =

(
1

1− x

)

f− =

(
1

3− x

)
so the Filippov sliding region is 1 ≤ x ≤ 3

Nonlinear sliding solves f · ∇h = 0, giving a condition on λ

λ =
1±
√

1 + 8x

4

so a sliding solution exists on x ≥ − 1
8
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Welander’s Model

The nondimensionalized model:

Ṫ = 1− T − k(ρ)T

Ṡ = β(1− S)− k(ρ)S
ρ = −αT + S

k(ρ) =
1

π
arctan

(
1

a
(ρ− ε)

)
+

1

2

Welander, Pierre. ”A simple heat-salt
oscillator.” Dynamics of Atmospheres and
Oceans 6.4 (1982): 233-242.
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Preliminary coordinate change

A coordinate change transforms the splitting manifold into the x
(T ) axis.

Let x = T , y = ρ− ε. Then the system is

ẋ = 1− x− kx
ẏ = β − βε− kε− α− (β + k)y − (αβ − α)x

with k = 1
π tan−1

(
y
a

)
+ 1

2
Note that this coordinate change preserves the Filippov

formulation.
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The Blow Up Method

One can make a coordinate change to focus on what happens on
the splitting manifold.

k = Φ(y)→ λ =

{
1 y > 0
0 y < 0

where Φ is a bijection between R and [0, 1]. Looking at the system
in the x, k coordinate system ”blows up” the region around y = 0.

As a→ 0, the whole space corresponds to the original region
y = 0.
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The Blow Up System in
Welander’s Model

ẋ = 1− x− kx
k̇ =

1

a
Φ′(k) (β − βε− kε− α+ (β + k) (a cot(πk))− (αβ − α)x)
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Fast/slow Analysis of the Blow
Up system

Because a << 1, this is a fast slow system. The fast system is

x′ = aπ
sin2(πk)

(1− x− kx)

k′ = β − βε− kε− α+ (β + k) (a cot(πk))− (αβ − α)x

Nonlinear sliding solutions are k nullclines, i.e. places where
solutions go into the splitting manifold and stick.

The k nullcline is a line, which intersects k = 0 at x = β−βε−α
αβ−α ,

and intersects k = 1 at x = β−βε−α−ε
αβ−α .
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Sliding solutions
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Filippov Analysis of the system

Alternatively, the boundaries of the sliding region under a
Filippov analysis are points where ẏ = 0 in the original system.
The boundaries are the same as the intersections of the nullcline

in the blow up system: x = β−βε−α
αβ−α , and x = β−βε−α−ε

αβ−α .
So there is no nonlinear sliding in this model!
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Considerations for a normal form

• Nonlinear sliding can destroy a periodic orbit

• If given a nonsmooth system, nothing can be determined
about the behavior in the smooth system

• Which kinds of transformations are allowed? Do they need to
preserve the Filippov vector field?

• If a transformation doesn’t preserve the Filippov vector field,
will it introduce nonlinear sliding which preserves the flow on
the splitting manifold?
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