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Random Circle Homeomorphisms!

(Q, F,P) is a probability space

For every w € Q, f(w,-) is a circle homeomorphism.

'as designed by C. Rodrigues & P. Ruffino (they cite Ludwig Arnold)
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Random Circle Homeomorphisms!

(Q, F,P) is a probability space

For every w € Q, f(w,-) is a circle homeomorphism.

Example: f(1,-) f(2,-) f(3,°)

Q=1{1,23}

'as designed by C. Rodrigues & P. Ruffino (they cite Ludwig Arnold)
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Random Circle Homeomorphisms

0 : Q — € is a measure-preserving ergodic function w.r.t P.

1. P(0~1(A)) =P(A), Ac F
2. If0~Y(E)=E,P(E)=0or1
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Random Circle Homeomorphisms
0 : Q — € is a measure-preserving ergodic function w.r.t P.

1. P(0~1(A)) =P(A), Ac F
2. If0~Y(E)=E,P(E)=0or1

Example:
Q=1{1,2,3,4}

w ‘ P(w) ‘ O(w)
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Random Circle Homeomorphisms

“Random dynamics” of f:

fM(w, x
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Example (cycle)

el Tl IS [=1vkel[ 4]
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el Tl IS [=1vkel[ 4]
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Random Circle Homeomorphisms

Make F(w,-) : R — R the lift of f(w,-) such that F(w,0) € [0,1).
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Example (Lift Iteration)

1 1 1 1 1 ]
0 0.5 1 15 2 25 3
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Random Circle Homeomorphisms

Fn((,u,X) = F(Hn_1w7 ) ©:--0 F(ewv ) © F(w,x)
The rotation number is:

Fr(w, x) —
p(F,0,w,x) = lim M

n—o00 n



Random Circle Homeomorphisms

Theorem: If p exists, it does not depend on the starting point, x.
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Random Circle Homeomorphisms
Let ©: QxS — Q x S, 07w, x) = (0"w, F*(w, x)).

Let u = P(dw)w,(ds) be an invariant probability measure w.r.t. ©.

Theorem:

. F"w,x) —x
p= lim —————
n—00 n

— IE/S1 (F"(w,x) — x)vu(s)ds  P-as.

where x = 771(s)
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Random Circle Homeomorphisms
Let ©: QxS — Q x S, 07w, x) = (0"w, F*(w, x)).

Let u = P(dw)w,(ds) be an invariant probability measure w.r.t. ©.

Theorem:

Fr _
p= lim (w’X)X:E/ (F"(w,x) — x)vu(s)ds  P-as.
n—o0 n st

where x = 771(s)

This is due to Birkhoff's ergodic theorem.
It implies that p is independent of w.

Is p independent of 87
Is it easy (or even possible) to find u?
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Huybers' Model of Ice Volume

V: ice volume T: deglaciation threshold

7n: growth of ice (a random variable) t: time in years(0,1,2,...)

Vt = Vt—l aF Nt if Vt 2 Tt; terminate
T; =at+ b+ 0(t)
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Huybers' Model of Ice Volume

V: ice volume T: deglaciation threshold

n

: growth of ice (a random variable) t: time in years(0, 1,2, ...)

Vt = Vt_]_ aF Nt if Vt 2 Tt; terminate
T; =at+ b+ 0(t)

“terminate”: reset V; linearly to zero (over 10,000 years)
V; is a discrete stochastic process

Vi is not a Markov process
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Huybers' Simplified

e Make T; periodic with a period of N years.
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Reduction to a “Circle” Map

Define g to be the map sending a termination time to the next one.
Suppose Uy, (t) is the volume V; with initial condition V4, = 0.

g(to) = min{t > to : Uy (t) > T;} + 10000
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Reduction to a “Circle” Map

Define g to be the map sending a termination time to the next one.

Suppose Uy, (t) is the volume V; with initial condition V4, = 0.

g(to) = min{t > to : Uy (t) > T;} + 10000

Alternatively, let V; have the initial condition V = O:

g(to) = to + min{t > 0: V; > Ty} + 10000
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Reduction to a “Circle” Map

Define g to be the map sending a termination time to the next one.

Suppose Uy, (t) is the volume V; with initial condition V;, = 0.

g(to) = min{t > to : Uy (t) > T;} + 10000

Alternatively, let V; have the initial condition Vo = 0:
g(to) = to + min{t > 0: V; > Ty} + 10000
Since T is periodic,

g(t+N)=g(t)+N
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Small Example Run
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Example of Return Map
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Huybers’ Made Continuous

Theorem:
Let X ~ N (p1,0%), Y ~ N(u2,03).

Then X + Y ~ N(u1 + po, 0% + 03)
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Huybers’ Made Continuous

Suppose 1t ~ N (i1, 0%). Then 1 +n2 + ...+ 1¢ ~ N (tp, to?)

If Vo =0, Vi ~ N(tp, to?)
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Huybers’ Made Continuous

Suppose 1t ~ N (i1, 0%). Then 1 +n2 + ...+ 1¢ ~ N (tp, to?)
If Vo =0, Vi ~ N(tp, to?)

What continuous stochastic process has this property?

e Brownian motion with a drift (A Gaussian Lévy Process)

o Vi = ut+ oW; where W; is Brownian motion.

19/23
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Circle Map

If Vi = ut+ oW;, we define the return map g by

g(to) =to+min{t >0: Vi > Ty}
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Circle Map

If Vi = ut+ oW;, we define the return map g by
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g induces a discrete Markov process (Xp, X1, X2, ...) of termination
times:

P[Xpe1 € AlX,] = Plg(Xa) € A
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Circle Map

If Vi = ut+ oW;, we define the return map g by

g(to) =to+min{t >0: Vi > Ty}

g induces a discrete Markov process (Xp, X1, X2, ...) of termination
times:

P[Xpe1 € AlX,] = Plg(Xa) € A

“Rotation number” for g:

p(g) = lim
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Does this stochastic process circle map make sense?

How does p(g) depend on T, u, and o7?

Can we reconcile these definitions of random circle maps?

What about random circle maps which are not homeomorphisms?
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