Huybers' Stochastic Glacial Process and Random Circle Maps

Jonathan Hahn

April 2015

You must use Adobe Reader to see the animations in this presentation

Random Circle Homeomorphisms ${ }^{1}$

$(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space

For every $\omega \in \Omega, f(\omega, \cdot)$ is a circle homeomorphism.

Random Circle Homeomorphisms ${ }^{1}$

$(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space
For every $\omega \in \Omega, f(\omega, \cdot)$ is a circle homeomorphism.

Example:	$f(1, \cdot)$	$f(2, \cdot)$	$f(3, \cdot)$
$\Omega=\{1,2,3\}$			
ω	$\mathbb{P}(\omega)$		
1	.25		
2	.25		
3	.5		

${ }^{1}$ as designed by C. Rodrigues \& P. Ruffino (they cite Ludwig Arnold)

Random Circle Homeomorphisms

$\theta: \Omega \rightarrow \Omega$ is a measure-preserving ergodic function w.r.t P.

1. $\mathbb{P}\left(\theta^{-1}(A)\right)=\mathbb{P}(A), A \in \mathcal{F}$
2. If $\theta^{-1}(E)=E, \mathbb{P}(E)=0$ or 1

Random Circle Homeomorphisms

$\theta: \Omega \rightarrow \Omega$ is a measure-preserving ergodic function w.r.t P.

1. $\mathbb{P}\left(\theta^{-1}(A)\right)=\mathbb{P}(A), A \in \mathcal{F}$
2. If $\theta^{-1}(E)=E, \mathbb{P}(E)=0$ or 1

Example:
$\Omega=\{1,2,3,4\}$

ω	$\mathbb{P}(\omega)$	$\theta(\omega)$
1	.25	2
2	.25	3
3	.25	4
4	.25	1

$f(4, \cdot)=f(3, \cdot)$

Random Circle Homeomorphisms

"Random dynamics" of f :
$f^{n}(\omega, x)=f\left(\theta^{n-1} \omega, \cdot\right) \circ \cdots \circ f(\theta \omega, \cdot) \circ f(\omega, x)$
"cocycle"

Example (cycle)

$K<\Delta \Delta \gg 1-++$

Example (no cycle?)

$K<\Delta D \gg|-|++$

Random Circle Homeomorphisms

Make $F(\omega, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ the lift of $f(\omega, \cdot)$ such that $F(\omega, 0) \in[0,1)$.

Example (Lift Iteration)

$K<\Delta \Delta \gg 1-\mid *+$

Random Circle Homeomorphisms

$$
F^{n}(\omega, x)=F\left(\theta^{n-1} \omega, \cdot\right) \circ \cdots \circ F(\theta \omega, \cdot) \circ F(\omega, x)
$$

The rotation number is:

$$
\rho(F, \theta, \omega, x)=\lim _{n \rightarrow \infty} \frac{F^{n}(\omega, x)-x}{n}
$$

Random Circle Homeomorphisms

Theorem: If ρ exists, it does not depend on the starting point, x.

Random Circle Homeomorphisms

Let $\Theta: \Omega \times \mathbb{S}^{1} \rightarrow \Omega \times \mathbb{S}^{1}, \Theta^{n}(\omega, x)=\left(\theta^{n} \omega, f^{n}(\omega, x)\right)$.
Let $\mu=\mathbb{P}(d \omega) \nu_{\omega}(d s)$ be an invariant probability measure w.r.t. Θ.

Theorem:

$$
\rho=\lim _{n \rightarrow \infty} \frac{F^{n}(\omega, x)-x}{n}=\mathbb{E} \int_{\mathbb{S}^{1}}\left(F^{n}(\omega, x)-x\right) \nu_{\omega}(s) d s \quad \mathbb{P} \text {-a.s. }
$$

where $x=\pi^{-1}(s)$

Random Circle Homeomorphisms

Let $\Theta: \Omega \times \mathbb{S}^{1} \rightarrow \Omega \times \mathbb{S}^{1}, \Theta^{n}(\omega, x)=\left(\theta^{n} \omega, f^{n}(\omega, x)\right)$.
Let $\mu=\mathbb{P}(d \omega) \nu_{\omega}(d s)$ be an invariant probability measure w.r.t. Θ.

Theorem:

$$
\rho=\lim _{n \rightarrow \infty} \frac{F^{n}(\omega, x)-x}{n}=\mathbb{E} \int_{\mathbb{S}^{1}}\left(F^{n}(\omega, x)-x\right) \nu_{\omega}(s) d s \quad \mathbb{P} \text {-a.s. }
$$

where $x=\pi^{-1}(s)$
This is due to Birkhoff's ergodic theorem. It implies that ρ is independent of ω.

Is ρ independent of θ ?
Is it easy (or even possible) to find μ ?

Huybers' Model of Ice Volume

V : ice volume η : growth of ice (a random variable) t : time in years $(0,1,2, \ldots)$

$$
\begin{array}{ll}
V_{t}=V_{t-1}+\eta_{t} & \text { if } V_{t} \geq T_{t}, \text { terminate } \\
T_{t}=a t+b+\theta(t) &
\end{array}
$$

Huybers' Model of Ice Volume

V : ice volume η : growth of ice (a random variable) t : time in years $(0,1,2, \ldots)$

$$
\begin{array}{ll}
V_{t}=V_{t-1}+\eta_{t} & \text { if } V_{t} \geq T_{t}, \text { terminate } \\
T_{t}=a t+b+\theta(t) &
\end{array}
$$

- "terminate" : reset V_{t} linearly to zero (over 10,000 years)

Huybers' Model of Ice Volume

V : ice volume
η : growth of ice (a random variable) t : time in years $(0,1,2, \ldots)$

$$
\begin{aligned}
& V_{t}=V_{t-1}+\eta_{t} \quad \text { if } V_{t} \geq T_{t}, \text { terminate } \\
& T_{t}=a t+b+\theta(t)
\end{aligned}
$$

- "terminate" : reset V_{t} linearly to zero (over 10,000 years)
- V_{t} is a discrete stochastic process

Huybers' Model of Ice Volume

V : ice volume
η : growth of ice (a random variable) t : time in years $(0,1,2, \ldots)$

$$
\begin{array}{ll}
V_{t}=V_{t-1}+\eta_{t} & \text { if } V_{t} \geq T_{t}, \text { terminate } \\
T_{t}=a t+b+\theta(t)
\end{array}
$$

- "terminate": reset V_{t} linearly to zero (over 10,000 years)
- V_{t} is a discrete stochastic process
- V_{t} is not a Markov process

Example Run

Huybers' Simplified

$$
\begin{array}{ll}
V_{t}=V_{t-1}+\eta_{t} & \text { if } V_{t} \geq T_{t}, \text { terminate } \\
T_{t}=a t+b+\theta(t)
\end{array}
$$

- Make T_{t} periodic with a period of N years.

$$
\begin{aligned}
& V_{t}=V_{t-1}+\eta_{t} \quad \text { if } V_{t} \geq T_{t}, \text { terminate } \\
& T_{t}=b+\sin \left(\frac{t}{2 \pi N}\right)
\end{aligned}
$$

Reduction to a "Circle" Map

Define g to be the map sending a termination time to the next one.
Suppose $U_{t_{0}}(t)$ is the volume V_{t} with initial condition $V_{t_{0}}=0$.

$$
g\left(t_{0}\right)=\min \left\{t>t_{0}: U_{t_{0}}(t) \geq T_{t}\right\}+10000
$$

Reduction to a "Circle" Map

Define g to be the map sending a termination time to the next one.
Suppose $U_{t_{0}}(t)$ is the volume V_{t} with initial condition $V_{t_{0}}=0$.

$$
g\left(t_{0}\right)=\min \left\{t>t_{0}: U_{t_{0}}(t) \geq T_{t}\right\}+10000
$$

Alternatively, let V_{t} have the initial condition $V_{0}=0$:

$$
g\left(t_{0}\right)=t_{0}+\min \left\{t>0: V_{t} \geq T_{t+t_{0}}\right\}+10000
$$

Reduction to a "Circle" Map

Define g to be the map sending a termination time to the next one.
Suppose $U_{t_{0}}(t)$ is the volume V_{t} with initial condition $V_{t_{0}}=0$.

$$
g\left(t_{0}\right)=\min \left\{t>t_{0}: U_{t_{0}}(t) \geq T_{t}\right\}+10000
$$

Alternatively, let V_{t} have the initial condition $V_{0}=0$:

$$
g\left(t_{0}\right)=t_{0}+\min \left\{t>0: V_{t} \geq T_{t+t_{0}}\right\}+10000
$$

Since T is periodic,

$$
g(t+N)=g(t)+N
$$

Small Example Run

Example of Return Map

Huybers' Made Continuous

Theorem:
Let $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$.

Then $X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

Huybers' Made Continuous

Suppose $\eta_{t} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then $\eta_{1}+\eta_{2}+\ldots+\eta_{t} \sim \mathcal{N}\left(t \mu, t \sigma^{2}\right)$ If $V_{0}=0, V_{t} \sim \mathcal{N}\left(t \mu, t \sigma^{2}\right)$

Huybers' Made Continuous

Suppose $\eta_{t} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then $\eta_{1}+\eta_{2}+\ldots+\eta_{t} \sim \mathcal{N}\left(t \mu, t \sigma^{2}\right)$
If $V_{0}=0, V_{t} \sim \mathcal{N}\left(t \mu, t \sigma^{2}\right)$
What continuous stochastic process has this property?

Huybers' Made Continuous

Suppose $\eta_{t} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then $\eta_{1}+\eta_{2}+\ldots+\eta_{t} \sim \mathcal{N}\left(t \mu, t \sigma^{2}\right)$
If $V_{0}=0, V_{t} \sim \mathcal{N}\left(t \mu, t \sigma^{2}\right)$
What continuous stochastic process has this property?

- Brownian motion with a drift (A Gaussian Lévy Process)

Huybers' Made Continuous

Suppose $\eta_{t} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then $\eta_{1}+\eta_{2}+\ldots+\eta_{t} \sim \mathcal{N}\left(t \mu, t \sigma^{2}\right)$
If $V_{0}=0, V_{t} \sim \mathcal{N}\left(t \mu, t \sigma^{2}\right)$
What continuous stochastic process has this property?

- Brownian motion with a drift (A Gaussian Lévy Process)
- $V_{t}=\mu t+\sigma W_{t}$ where W_{t} is Brownian motion.

Example Run

Circle Map

If $V_{t}=\mu t+\sigma W_{t}$, we define the return map g by

$$
g\left(t_{0}\right)=t_{0}+\min \left\{t>0: V_{t} \geq T_{t+t_{0}}\right\}
$$

Circle Map

If $V_{t}=\mu t+\sigma W_{t}$, we define the return map g by

$$
g\left(t_{0}\right)=t_{0}+\min \left\{t>0: V_{t} \geq T_{t+t_{0}}\right\}
$$

g induces a discrete Markov process $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ of termination times:

$$
\mathbb{P}\left[X_{n+1} \in A \mid X_{n}\right]=\mathbb{P}\left[g\left(X_{n}\right) \in A\right]
$$

Circle Map

If $V_{t}=\mu t+\sigma W_{t}$, we define the return map g by

$$
g\left(t_{0}\right)=t_{0}+\min \left\{t>0: V_{t} \geq T_{t+t_{0}}\right\}
$$

g induces a discrete Markov process $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ of termination times:

$$
\mathbb{P}\left[X_{n+1} \in A \mid X_{n}\right]=\mathbb{P}\left[g\left(X_{n}\right) \in A\right]
$$

"Rotation number" for g :

$$
\rho(g)=\lim _{n \rightarrow \infty} \frac{X_{n}-X_{0}}{n}
$$

"pdf" of g

Does this stochastic process circle map make sense?
How does $\rho(g)$ depend on T, μ, and σ ?
Can we reconcile these definitions of random circle maps?
What about random circle maps which are not homeomorphisms?

