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Random Circle Homeomorphisms1

(Ω,F ,P) is a probability space

For every ω ∈ Ω, f (ω, ·) is a circle homeomorphism.

Example:
Ω = {1, 2, 3}

ω P(ω)

1 .25
2 .25
3 .5

f (1, ·) f (2, ·) f (3, ·)

1as designed by C. Rodrigues & P. Ruffino (they cite Ludwig Arnold)
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Random Circle Homeomorphisms

θ : Ω→ Ω is a measure-preserving ergodic function w.r.t P.

1. P(θ−1(A)) = P(A), A ∈ F
2. If θ−1(E ) = E , P(E ) = 0 or 1

Example:
Ω = {1, 2, 3, 4}

ω P(ω) θ(ω)

1 .25 2
2 .25 3
3 .25 4
4 .25 1

f (4, ·) = f (3, ·)

1

2

3

4

θ
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Random Circle Homeomorphisms

“Random dynamics” of f :

f n(ω, x) = f (θn−1ω, ·) ◦ · · · ◦ f (θω, ·) ◦ f (ω, x) “cocycle”
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Example (cycle)
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Example (no cycle?)
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Random Circle Homeomorphisms

Make F (ω, ·) : R→ R the lift of f (ω, ·) such that F (ω, 0) ∈ [0, 1).

→
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Example (Lift Iteration)
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Random Circle Homeomorphisms

F n(ω, x) = F (θn−1ω, ·) ◦ · · · ◦ F (θω, ·) ◦ F (ω, x)

The rotation number is:

ρ(F , θ, ω, x) = lim
n→∞

F n(ω, x)− x

n
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Random Circle Homeomorphisms

Theorem: If ρ exists, it does not depend on the starting point, x .
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Random Circle Homeomorphisms

Let Θ : Ω× S1 → Ω× S1, Θn(ω, x) = (θnω, f n(ω, x)).

Let µ = P(dω)νω(ds) be an invariant probability measure w.r.t. Θ.

Theorem:

ρ = lim
n→∞

F n(ω, x)− x

n
= E

∫
S1

(
F n(ω, x)− x

)
νω(s)ds P-a.s.

where x = π−1(s)

This is due to Birkhoff’s ergodic theorem.
It implies that ρ is independent of ω.

Is ρ independent of θ?
Is it easy (or even possible) to find µ?
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Huybers’ Model of Ice Volume

V : ice volume T : deglaciation threshold

η: growth of ice (a random variable) t: time in years(0, 1, 2, ...)

Vt = Vt−1 + ηt if Vt ≥ Tt , terminate

Tt = at + b + θ(t)

• “terminate”: reset Vt linearly to zero (over 10,000 years)

• Vt is a discrete stochastic process

• Vt is not a Markov process
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Example Run
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Huybers’ Simplified

Vt = Vt−1 + ηt if Vt ≥ Tt , terminate

Tt = at + b + θ(t)

• Make Tt periodic with a period of N years.

Vt = Vt−1 + ηt if Vt ≥ Tt , terminate

Tt = b + sin(
t

2πN
)
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Reduction to a “Circle” Map

Define g to be the map sending a termination time to the next one.

Suppose Ut0(t) is the volume Vt with initial condition Vt0 = 0.

g(t0) = min{t > t0 : Ut0(t) ≥ Tt}+ 10000

Alternatively, let Vt have the initial condition V0 = 0:

g(t0) = t0 + min{t > 0 : Vt ≥ Tt+t0}+ 10000

Since T is periodic,

g(t + N) = g(t) + N
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Small Example Run
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Example of Return Map
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Huybers’ Made Continuous

Theorem:

Let X ∼ N (µ1, σ
2
1),Y ∼ N (µ2, σ

2
2).

Then X + Y ∼ N (µ1 + µ2, σ
2
1 + σ22)
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Huybers’ Made Continuous

Suppose ηt ∼ N (µ, σ2). Then η1 + η2 + ...+ ηt ∼ N (tµ, tσ2)

If V0 = 0, Vt ∼ N (tµ, tσ2)

What continuous stochastic process has this property?

• Brownian motion with a drift (A Gaussian Lévy Process)

• Vt = µt + σWt where Wt is Brownian motion.
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Example Run
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Circle Map

If Vt = µt + σWt , we define the return map g by

g(t0) = t0 + min{t > 0 : Vt ≥ Tt+t0}

g induces a discrete Markov process (X0,X1,X2, ...) of termination
times:

P[Xn+1 ∈ A|Xn] = P[g(Xn) ∈ A]

“Rotation number” for g :

ρ(g) = lim
n→∞

Xn − X0

n
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“pdf” of g
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?

Does this stochastic process circle map make sense?
How does ρ(g) depend on T , µ, and σ?
Can we reconcile these definitions of random circle maps?
What about random circle maps which are not homeomorphisms?

23 / 23
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