Julie Leifeld

A (mathematical) Introduction to Ocean Circulation Box Models

Julie Leifeld

University of Minnesota

October 13, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

A (mathematical) Introduction to Ocean Circulation Box Models

- What are Box Models?
- Stommel's Box Model
- Cessi's Model
- Roberts and Saha's Model

Julie Leifeld

What are Box Models?

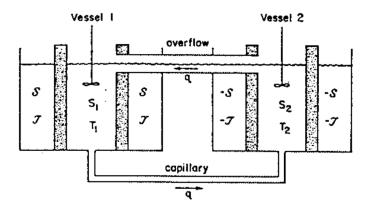
(And why do we use them?)

うして ふゆう ふほう ふほう ふしつ

- What is the simplest model which can accurately describe ocean phenomena?
- A box model divides the ocean into large "boxes", and makes the assumption that the water in each box is well mixed.
- This allows the mathematician to write down low dimensional differential equations governing the behavior of the water, which can then be studied with dynamical systems techniques.
- The point is to look at large scale, long term behavior, as opposed to detailed behavior, but can still give insight into the real system.

Julie Leifeld

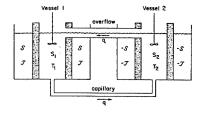
Stommel's Two Box Model



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Julie Leifeld

Stommel's Two Box Model



$$kq = \rho_1 - \rho_2$$

q > 0 if the flow goes from tank 1 to tank 2, and q < 0 otherwise.

・ロト ・御 ト ・ ヨト ・ ヨト … ヨー

$$\rho = \rho_0 (1 - \alpha T + \beta S)$$

Julie Leifeld

Stommel's Two Box Model

$$\frac{dT_1}{dt} = c(\mathcal{T} - T_1) - |q|T_1 + |q|T_2
\frac{dT_2}{dt} = c(-\mathcal{T} - T_2) + |q|T_1 - |q|T_2
\frac{dS_1}{dt} = d(\mathcal{S} - S_1) - |q|S_1 + |q|S_2
\frac{dS_2}{dt} = d(-\mathcal{S} - S_2) + |q|S_1 - |q|S_2$$

Julie Leifeld

Stommel's Two Box Model

The symmetry of the system suggests we should look at solutions where $T_1 = -T_2$, and $S_1 = -S_2$. Let $z = T_1 + T_2$.

$$\frac{dz}{dt} = c\mathcal{T} - c\mathcal{T} - c(T_1 + T_2) - |q|(T_1 + T_2) + |q|(T_1 + T_2) = -cz$$

So, the $T_1 = -T_2$ is invariant and attracting. Doing this dimensional reduction we get

$$\frac{dT}{dt} = c(\mathcal{T} - T) - 2|q|T$$
$$\frac{dS}{dt} = d(\mathcal{S} - S) - 2|q|S$$

ション ふゆ アメリア ション ひゃく

Stommel's Two Box Model

Nondimensionalize! Let $\tau = ct$, $\delta = \frac{d}{c}$, $y = \frac{T}{T}$, and $x = \frac{S}{S}$. The system becomes: $\frac{dy}{dt} = -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \int dx$

$$\frac{d\tau}{d\tau} = \delta(1-x) - |f|x$$

where f is the nondimensionalized flow:

$$\lambda f = -y + Rx, \quad R = \frac{\beta S}{\alpha T}$$
$$f = \frac{2q}{c}, \quad \lambda = \frac{ck}{4\rho_0 \alpha T}$$

ション ふゆ く は く は く む く む く し く

A (mathematical) Introduction to Ocean Circulation Box Models

Stommel's Two Box Model

Equilibrium solutions occur at

A (mathematical) Introduction

to Ocean Circulation Box Models Julie Leifeld

$$\begin{array}{rcl} x & = & \frac{1}{1 + \frac{|f|}{\delta}} \\ y & = & \frac{1}{1 + |f|} \end{array}$$

So, we have

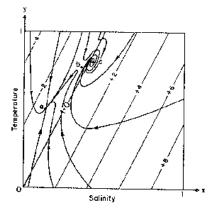
$$\lambda f = -y + Rx = -\frac{1}{1+|f|} + \frac{R}{1+\frac{|f|}{\delta}} = \phi(f,R,\delta)$$

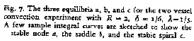
The existence of multiple equilibria depend on λ , R, and δ . For certain R and δ , it is possible to have three equilibrium solutions.

ション ふゆ く は く は く む く む く し く

Julie Leifeld

Stommel's Two Box Model





$$R=2, \ \delta=\frac{1}{6}, \ \lambda=\frac{1}{5}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A (mathematical) Introduction to Ocean Circulation Box Models

Julie Leifeld

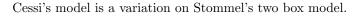
• Can changes in external forcing can cause a transition between the stable states found in Stommel's model?

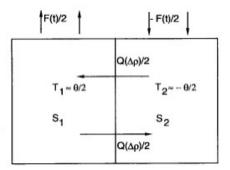
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Circulation Box Models Julie Leifeld

A (mathematical)

Introduction to Ocean





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A (mathematical) Introduction to Ocean Circulation Box Models

$$\begin{split} \rho/\rho_0 &= 1 + \alpha_S(S - S_0) - \alpha_T(T - T_0) \\ \dot{T}_1 &= -t_r^{-1} \left(T_1 - \frac{\theta}{2}\right) - \frac{1}{2}Q(\Delta\rho)(T_1 - T_2) \\ \dot{T}_2 &= -t_r^{-1} \left(T_2 + \frac{\theta}{2}\right) - \frac{1}{2}Q(\Delta\rho)(T_2 - T_1) \\ \dot{S}_1 &= \frac{F(t)}{2H}S_0 - \frac{1}{2}Q(\Delta\rho)(S_1 - S_2) \\ \dot{S}_2 &= -\frac{F(t)}{2H}S_0 - \frac{1}{2}Q(\Delta\rho)(S_2 - S_1) \end{split}$$

A (mathematical) Introduction to Ocean Circulation Box Models

Julie Leifeld

We again reduce the dimension of the system $(\Delta T = T_1 - T_2, \ \Delta S = S_1 - S_2)$ $\frac{d\Delta T}{dt} = -t_r^{-1}(\Delta T - \theta) - Q(\Delta \rho)\Delta T$ $\frac{d\Delta S}{dt} = \frac{F(t)}{H}S_0 - Q(\Delta \rho)\Delta S$

$$Q(\Delta \rho) = \frac{1}{t_d} + \frac{q}{v} (\Delta \rho)^2$$

and nondimensionalize $(x = \frac{\Delta T}{\theta}, y = \frac{\alpha_S \Delta S}{\alpha_T \theta}, t = t_d t')$

$$\begin{array}{rcl} \dot{x} & = & -\alpha(x-1) - x[1+\mu^2(x-y)^2] \\ \dot{y} & = & p(t) - y[1+\mu^2(x-y)^2] \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ション ふゆ く は く は く む く む く し く

 $\alpha = t_d/t_r$ is large, so this is a fast-slow system.

The slow equation:

$$\begin{array}{rcl} \varepsilon \dot{x} &=& -(x-1) - \varepsilon x [1+\mu^2 (x-y)^2] \\ \dot{y} &=& p(t) - y - \mu^2 y (1-y)^2 \end{array}$$

The fast equation:

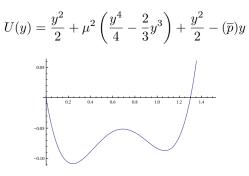
$$\begin{array}{rcl} x' & = & -(x-1) - \varepsilon x [1 + \mu^2 (x-y)^2] \\ y' & = & \varepsilon (p(t) - y - \mu^2 y (1-y)^2) \end{array}$$

The (normally hyperbolic) critical manifold: x = 1.

A (mathematical) Introduction to Ocean Circulation Box Models

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

For any fixed time, we can find a potential function for behavior on the critical manifold



A (mathematical) Introduction to Ocean Circulation Box Models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let p be of the form $p(t) = \overline{p} + p'(t)$ with

$$p'(t) = \begin{cases} 0 & t \le 0\\ \Delta & 0 \le t \le \tau\\ 0 & t > \tau \end{cases}$$

A (mathematical) Introduction to Ocean Circulation Box Models

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

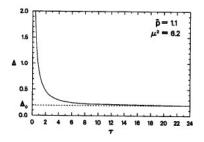
A (mathematical) Introduction to Ocean Circulation Box Models

Julie Leifeld

Once the salinity forcing turns on, y changes according to the integral

$$\int_{y_a}^{y} \frac{d\tilde{y}}{-[1+\mu^2(\tilde{y}-1)^2]\tilde{y}+\overline{p}+\Delta} = \int_{0}^{\tau} dt$$

A transition between the two stable states depends on the time over which the forcing is applied.



Julie Leifeld

Cessi's Model

ション ふゆ く は く は く む く む く し く

This also shows that a critical forcing amplitude is necessary for the transition, i.e. total volume of fresh water is not the determining factor!

$$\overline{p} + \Delta_0 = \frac{2}{3} + \frac{2}{27}\mu^2(\pm 1 + (1 - 3\mu^{-2})^{3/2})$$

Julie Leifeld

Roberts and Saha

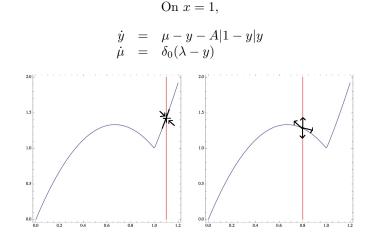
ション ふゆ く は く は く む く む く し く

Adding a pulse of fresh water forcing can push Stommel's model into different stable states. What if the salinity forcing is more continuous?

$$\begin{array}{rcl} x' &=& 1-x-\varepsilon A|x-y|x\\ y' &=& \varepsilon(\mu-y-A|x-y|y)\\ \mu' &=& \varepsilon\delta(1+ax-by) \end{array}$$

Julie Leifeld

Roberts and Saha



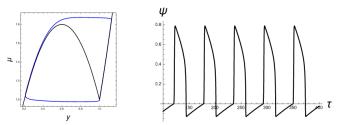
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Julie Leifeld

Roberts and Saha

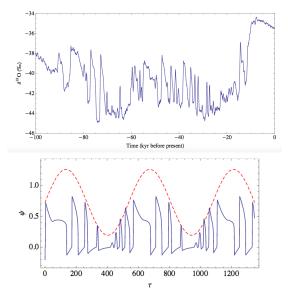
イロト イヨト イヨト イヨト

æ



Julie Leifeld

Dansgaard-Oeschger Events



▲ロト ▲園ト ▲ヨト ▲ヨト → ヨー のんの

Conclusions

ション ふゆ く は く は く む く む く し く

A (mathematical) Introduction to Ocean Circulation Box Models

- Ocean box models can have important implications for climate science.
- Ocean box models can have some really cool and complicated math.

Julie Leifeld

References

ション ふゆ マ キャット マックシン

Stommel, Henry. "Thermohaline convection with two stable regimes of flow." Tellus A 13.2 (2011).

Cessi, Paola. "A simple box model of stochastically forced thermohaline flow." Journal of physical oceanography 24.9 (1994): 1911-1920.

Roberts, Andrew. "Relaxation oscillations in an idealized ocean circulation model." arXiv preprint arXiv:1411.7345 (2014).