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Dansgaard-Oeschger Events

Pulses of abrupt warming over last 100 kyr

Up to 10 °C warming over a few decades

Slower “cooling phase”

Average period 1.5 kyr — internal climate mechanism

Most intense in North Atlantic, but effects felt globally (at least as
far as China)

Hypothesized mechanism: reversal of AMOC
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Figure: Oxygen isotope data from Greenland (NGRIP).
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Bistability of the MOC
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Figure: North Atlantic meridional overturning circulation (MOC).
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Stommel

Tea Sg | overflow | Tp Sp
—
(U
Te Se Tp Sp

Y

%
bottom flow

Figure: Schematic of Stommel's model.
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Stommel

The model is:

gTe =Rr(T2—To) +[¥|(T, — Te)
*T =Rr(T7 = Tp) + [Yl(Te = Tp)
(Zf = 'r\)S(Sé3 Se) + |’L/J|(5p - Se)
5 = Rs(55 = Sp) + [¥(Se — Sp)
:w (Pp Pe

where:
e T's denote temperatures, S's denote salinities

e Subscripts: a - atmosphere, e - equator, p - pole
e ) - transport (advection, circulation strength)
o Density p; = po[l — a(T; — To) + B(Si — So)]-
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Stommel

The change of variables:

T=T.— 7197 S= :;e - f;pa
Te=T:-T2, $°=52-52,
X=T.+T, Y=5.+5,

turns the model into

%T =Rp(T?—T)=2Y|T
@S =Rs(57-5)-2y[S
w :¢0(QT—65)7

where X, Y decouple.
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Dimensionless Stommel

To non-dimensionalize the system, set

x=L =B Ret, p= P2 A 20T
*Taa yiO[T‘w T = Rst, /J'*O[Tay = RS .
Then the model becomes:
ex =1—x—cAlx—y|x (3)
y =p—y—Ax—yly,
where R
S
= — 1.
5 R, <

GSPT: The set {x = 1} is attracting and normally hyperbolic.
For ¢ <« 1, solutions will end up within O(e) of x = 1.
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Reduced Flow

Dynamics of the full system can be understood by the 1D system:

y=pn-y—Al-yly. (4)
Equilibria occur at
[ L+ Ay —Ay? fory<l (5)
F=1 =A)y+Ay?2 fory>1
M H
02 04 06 08 1.0 12 .y 0.2 04 06 08 1.0 1‘2 y
(a)A<1 (by A>1

Figure: Graphs of equilibria for (a) A< 1 and (b) A > 1.
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Hysteresis

Figure: Bifurcation diagram for reduced equation (dashed), with a hysteresis
loop (solid black) overlay. 1 = ao(1 — y).

Problem: what causes pu to vary?

Mathematics? Climate?
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Hysteresis vs. Relaxation Oscillations

Hysteresis:
y=p(t)—y—All-yly

Oscillations result from slowly varying parameter u. Period and amplitude
determined by external forces.

Relaxation oscillation:
y=p—y—All-yly
1 =10g(x,y, 1; \)

Oscillations result from periodic orbit, ;1 changes based on state
variables. Period and amplitude sensitive to parameters of the system.
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Hopf Bifurcation

Figure: Critical manifold = A|1 — y|y when A > 1. Globally attracting
equilibrium when A = 1.05.
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Hopf Bifurcation
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Figure: Critical manifold u = A|1 — y|y when A > 1. Continuum of homoclinic
orbits when A = 1.
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Hopf Bifurcation
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Figure: Critical manifold i = A|1 — y|y when A > 1. Unique periodic orbit
when A = 0.95.
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Canard cycles
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Figure: Singular Canards -



Canard Explosion in Smooth Systems

Amplitude Amplitude

Figure: Canard explosion for fixed € > 0. Figure from Krupa and Szmolyan
(2001)
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Canards in PWSC Systems?
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(a) Canards when Hopf (b) Canards when Hopf
bifurcation for A < 0. bifurcation occurs for A > 0.
y y

(c) Canards when Hopf (d) Super-explosion.

bifurcation occurs at A = 0.
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Extending Stommel's Model

Including o as slow state variable:
x'=1-x—¢eAlx —y|x
y' =e(p—y—Ax—yly)
W =ed(1+ ax — by).

Question: what climate component is modeled by 7
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GSPT and GSPT

Critical manifold {x = 1} is still attracting. However, the reduced
problem,

y=p—y—Al-yly (7)
is now itself a fast/slow system which is analyzed using GSPT.
The critical manifold of (7) is given by

Mo = {pn=y+All—yly}. (8)

Note that this is precisely the curve of equilibria from (3) the
dimensionless Stommel model earlier.
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A>1

To simplify the analysis, rewrite (7) as

y= p—y—Al-yly
. 9
= do(A—y). )

where 0o = db and A = (1 + a)/b.
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Oscillations in the Extended Stommel Model
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(a) Stable periodic orbit when (b) Time series for 1)
A=5 A=0.8,and 6 =0.1 for the trajectory in (a)
2 3
m}’ h h y

(c) Canard trajectory when  (d) Super-explosion when
A=11 A =0.995, and A =15 A =0.995, and
6o = 0.01. 6o = 0.01.

Figure: Oscillatory behavior in (9).
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Astronomical Forcing

A variation in zonal insolation gradients will naturally affect the
atmospheric temperature (7?) and salinity (5?) gradients. In system (9),
the inclusion of orbital forcing implies that parameters A and \ become
time-dependent. The new system becomes

y= p—y—AMl-yly
= S(\(r) — ), (10)
where

A(T) = A+ psinwr
A7) = A+ gsinw(T — ).
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Amplitude Modulation
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(a) Trajectory of the forced system in  (b) Time series for ¥ (solid) with the

phase space. scaled obliquity (dashed) variations
from the last 100 kyr. The units of
time are arbitrary.

Figure: Oscillations in the forced system (10) when d, = 0.07, A = 3.5,

p=24 X=08, qg=1099, w=m/270, and 6 = 250.
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(a) Oxygen isotope data from Greenland
(NGRIP).

Comparison with data
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Figure: Dansgaard-Oeschger cycles in (a) data and (b) a conceptual model (7).

The parameters used to generate the times series in (b) are do = 0.1, A = 3.5,

p=24 X=08, q=1099, w=m/270, and 6 = 250.
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