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Dansgaard-Oeschger Events

• Pulses of abrupt warming over last 100 kyr

• Up to 10 oC warming over a few decades

• Slower “cooling phase”

• Average period 1.5 kyr → internal climate mechanism

• Most intense in North Atlantic, but effects felt globally (at least as
far as China)

• Hypothesized mechanism: reversal of AMOC
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The Data
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Figure: Oxygen isotope data from Greenland (NGRIP).
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Bistability of the MOC

Figure: North Atlantic meridional overturning circulation (MOC).
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Stommel
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Figure: Schematic of Stommel’s model.
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Stommel

The model is:

d
dtTe = RT (T a

e − Te) + |ψ|(Tp − Te)
d
dtTp = RT (T a

p − Tp) + |ψ|(Te − Tp)
d
dt Se = RS(Sa

e − Se) + |ψ|(Sp − Se)
d
dt Sp = RS(Sa

p − Sp) + |ψ|(Se − Sp)

ψ = ψ0

(
ρp−ρe

ρ0

)
,

(1)

where:

• T ’s denote temperatures, S ’s denote salinities

• Subscripts: a - atmosphere, e - equator, p - pole

• ψ - transport (advection, circulation strength)

• Density ρi = ρ0[1− α(Ti − T0) + β(Si − S0)].

8/26



Stommel

The change of variables:

T = Te − Tp, S = Se − Sp,
T a = T a

e − T a
p , Sa = Sa

e − Sa
p ,

X = Te + Tp Y = Se + Sp,

turns the model into

d
dtT = RT (T a − T )− 2|ψ|T
d
dt S = RS(Sa − S)− 2|ψ|S
ψ = ψ0(αT − βS),

(2)

where X ,Y decouple.
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Dimensionless Stommel

To non-dimensionalize the system, set

x =
T

T a
, y =

βS

αT a
, τ = RS t, µ =

βSa

αT a
, A =

2ψ0αT
a

RS
.

Then the model becomes:

εẋ = 1− x − εA|x − y |x
ẏ = µ− y − A|x − y |y , (3)

where

ε =
RS

RT
� 1.

GSPT: The set {x = 1} is attracting and normally hyperbolic.
For ε� 1, solutions will end up within O(ε) of x = 1.
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Reduced Flow
Dynamics of the full system can be understood by the 1D system:

ẏ = µ− y − A|1− y |y . (4)

Equilibria occur at

µ =

{
(1 + A)y − Ay2 for y < 1
(1− A)y + Ay2 for y > 1

(5)

(a) A < 1 (b) A > 1

Figure: Graphs of equilibria for (a) A < 1 and (b) A > 1.
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Hysteresis

Figure: Bifurcation diagram for reduced equation (dashed), with a hysteresis
loop (solid black) overlay. ψ = αψ0(1− y).

Problem: what causes µ to vary?
Mathematics? Climate?
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Hysteresis vs. Relaxation Oscillations

Hysteresis:
ẏ = µ(t)− y − A|1− y |y

Oscillations result from slowly varying parameter µ. Period and amplitude
determined by external forces.

Relaxation oscillation:

ẏ = µ− y − A|1− y |y
µ̇ = δg(x , y , µ;λ)

Oscillations result from periodic orbit, µ changes based on state
variables. Period and amplitude sensitive to parameters of the system.
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Hopf Bifurcation
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Figure: Critical manifold µ = A|1− y |y when A > 1. Globally attracting
equilibrium when λ = 1.05.
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Hopf Bifurcation
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Figure: Critical manifold µ = A|1− y |y when A > 1. Continuum of homoclinic
orbits when λ = 1.
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Hopf Bifurcation
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Figure: Critical manifold µ = A|1− y |y when A > 1. Unique periodic orbit
when λ = 0.95.
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Canard cycles

(a) Singular canard cycle.
(b) Singular maximal
canard.

(c) Singular canard with
head. (d) A duck!

Figure: Singular Canards
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Canard Explosion in Smooth Systems

Figure: Canard explosion for fixed ε > 0. Figure from Krupa and Szmolyan
(2001)

18/26



Canards in PWSC Systems?

(a) Canards when Hopf
bifurcation for λ < 0.

(b) Canards when Hopf
bifurcation occurs for λ > 0.

(c) Canards when Hopf
bifurcation occurs at λ = 0.

(d) Super-explosion.

19/26



Extending Stommel’s Model

Including µ as slow state variable:

x ′ = 1− x − εA|x − y |x
y ′ = ε(µ− y − A|x − y |y)
µ′ = εδ(1 + ax − by).

(6)

Question: what climate component is modeled by µ?

20/26



GSPT and GSPT

Critical manifold {x = 1} is still attracting. However, the reduced
problem,

ẏ = µ− y − A|1− y |y
µ̇ = δ(1 + a− by),

(7)

is now itself a fast/slow system which is analyzed using GSPT.
The critical manifold of (7) is given by

M0 = {µ = y + A|1− y |y}. (8)

Note that this is precisely the curve of equilibria from (3) the
dimensionless Stommel model earlier.
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A > 1

To simplify the analysis, rewrite (7) as

ẏ = µ− y − A|1− y |y
µ̇ = δ0(λ− y),

(9)

where δ0 = δb and λ = (1 + a)/b.
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Oscillations in the Extended Stommel Model

(a) Stable periodic orbit when
A = 5, λ = 0.8, and δ = 0.1

(b) Time series for ψ
for the trajectory in (a)

(c) Canard trajectory when
A = 1.1, λ = 0.995, and
δ0 = 0.01.

(d) Super-explosion when
A = 1.5, λ = 0.995, and
δ0 = 0.01.

Figure: Oscillatory behavior in (9).
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Astronomical Forcing

A variation in zonal insolation gradients will naturally affect the
atmospheric temperature (T a) and salinity (Sa) gradients. In system (9),
the inclusion of orbital forcing implies that parameters A and λ become
time-dependent. The new system becomes

ẏ = µ− y − A(τ)|1− y |y
µ̇ = δ0(λ(τ)− y),

(10)

where

A(τ) = Ā + p sinωτ

λ(τ) = λ̄+ q sinω(τ − θ).
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Amplitude Modulation
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(a) Trajectory of the forced system in
phase space.
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(b) Time series for ψ (solid) with the
scaled obliquity (dashed) variations
from the last 100 kyr. The units of
time are arbitrary.

Figure: Oscillations in the forced system (10) when δ0 = 0.07, Ā = 3.5,
p = 2.4, λ̄ = 0.8, q = 1.99, ω = π/270, and θ = 250.
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Comparison with data
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(a) Oxygen isotope data from Greenland
(NGRIP).
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(b) Time series for ψ (solid) in
(7).

Figure: Dansgaard-Oeschger cycles in (a) data and (b) a conceptual model (7).
The parameters used to generate the times series in (b) are δ0 = 0.1, Ā = 3.5,
p = 2.4, λ̄ = 0.8, q = 1.99, ω = π/270, and θ = 250.
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