Catastrophes and Resilience of a Zero-Dim Climate System

Shannon Negaard

University of Minnesota

12 Apr 2016

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

12 Apr 2016 1 / 36

Motivation: exhibit catastrophes in realistic situations

K. Fraedrich, "Catastrophes and resilience of a zero dim'l climate system w/ ice-albedo and greenhouse feedback" Quart. J. R. Met. Soc. (1979)

Definition

A catastrophe is a singularity (of a smooth map), exhibited by (small) changes of an external parameter.

• The names for catastrophes and bifurcations differ, but they refer to the same phenomena.

Motivation: exhibit catastrophes in realistic situations

K. Fraedrich, "Catastrophes and resilience of a zero dim'l climate system w/ ice-albedo and greenhouse feedback" Quart. J. R. Met. Soc. (1979)

Definition

A catastrophe is a singularity (of a smooth map), exhibited by (small) changes of an external parameter.

- The names for catastrophes and bifurcations differ, but they refer to the same phenomena.
- For example, a "fold catastrophe" might otherwise be known as a "saddle-node" bifurcation. A "cusp catastrophe" is where two saddle-node bifurcations coalesce.

Motivation: exhibit catastrophes in realistic situations

K. Fraedrich, "Catastrophes and resilience of a zero dim'l climate system w/ ice-albedo and greenhouse feedback" *Quart. J. R. Met. Soc.* (1979)

Definition

A catastrophe is a singularity (of a smooth map), exhibited by (small) changes of an external parameter.

- The names for catastrophes and bifurcations differ, but they refer to the same phenomena.
- For example, a "fold catastrophe" might otherwise be known as a "saddle-node" bifurcation. A "cusp catastrophe" is where two saddle-node bifurcations coalesce.
- The author's goal is to exhibit fold catastrophes and cusp catastrophes.

(i) Radiation in and out

- 一司

< ∃ > < э

- (i) Radiation in and out
- (ii) Potentially critical flaws

- (i) Radiation in and out
- (ii) Potentially critical flaws
- Adding complexity
 - (i) No feedback

- (i) Radiation in and out
- (ii) Potentially critical flaws
- Adding complexity
 - (i) No feedback
 - (ii) Just ice albedo feedback

- (i) Radiation in and out
- (ii) Potentially critical flaws
- Adding complexity
 - (i) No feedback
 - (ii) Just ice albedo feedback
 - (iii) Just greenhouse feedback

- (i) Radiation in and out
- (ii) Potentially critical flaws

Adding complexity

- (i) No feedback
- (ii) Just ice albedo feedback
- (iii) Just greenhouse feedback
- (iv) Ice albedo and greenhouse feedback

- (i) Radiation in and out
- (ii) Potentially critical flaws
- Adding complexity
 - (i) No feedback
 - (ii) Just ice albedo feedback
 - (iii) Just greenhouse feedback
 - (iv) Ice albedo and greenhouse feedback
- O Along the way: bifurcation diagrams

• Zero dimensional: no physical, geometric dimensions.

- Zero dimensional: no physical, geometric dimensions.
- There are external parameters

- Zero dimensional: no physical, geometric dimensions.
- There are external parameters
 - ice albedo
 - outgoing radiation constants
 - insolation constants
 - etc.

- Zero dimensional: no physical, geometric dimensions.
- There are external parameters
 - ice albedo
 - outgoing radiation constants
 - insolation constants
 - etc.
- No physical difference between poles and equator

- Zero dimensional: no physical, geometric dimensions.
- There are external parameters
 - ice albedo
 - outgoing radiation constants
 - insolation constants
 - etc.
- No physical difference between poles and equator
- Perfect internal circulation

- Zero dimensional: no physical, geometric dimensions.
- There are external parameters
 - ice albedo
 - outgoing radiation constants
 - insolation constants
 - etc.
- No physical difference between poles and equator
- Perfect internal circulation
- Most important factor: incoming and outgoing radiation

- Zero dimensional: no physical, geometric dimensions.
- There are external parameters
 - ice albedo
 - outgoing radiation constants
 - insolation constants
 - etc.
- No physical difference between poles and equator
- Perfect internal circulation
- Most important factor: incoming and outgoing radiation

$$c\frac{dT}{dt} = R \downarrow -R \uparrow$$

$$c\frac{dT}{dt}=R\downarrow -R\uparrow,$$

where

- T is temperature,
- t is time, and
- $R \downarrow$ and $R \uparrow$ are incoming and outgoing radiation.

Here, c is a positive constant, determined by external measurements.

$$R\downarrow=\frac{1}{4}\mu I_0(1-\alpha_p).$$

• I_0 and μ are used to account for variations in the solar constant, planetary orbit (von Woerkom 53).

$$R\downarrow=\frac{1}{4}\mu I_0(1-\alpha_p).$$

- I_0 and μ are used to account for variations in the solar constant, planetary orbit (von Woerkom 53).
- Ice albedo α_p :

$$R\downarrow=\frac{1}{4}\mu I_0(1-\alpha_p).$$

- I_0 and μ are used to account for variations in the solar constant, planetary orbit (von Woerkom 53).
- Ice albedo α_p :

$$R\downarrow=\frac{1}{4}\mu I_0(1-\alpha_p).$$

- I_0 and μ are used to account for variations in the solar constant, planetary orbit (von Woerkom 53).
- Ice albedo α_p :
 - Typically linear:

 $\alpha_p = a_1 - b_1 T$ (Budyko 69, Sellers 69)

$$R\downarrow=\frac{1}{4}\mu I_0(1-\alpha_p).$$

- I_0 and μ are used to account for variations in the solar constant, planetary orbit (von Woerkom 53).
- Ice albedo α_p :
 - Typically linear:

 $\alpha_p = a_1 - b_1 T$ (Budyko 69, Sellers 69)

$$R\downarrow=\frac{1}{4}\mu I_0(1-\alpha_p).$$

- I_0 and μ are used to account for variations in the solar constant, planetary orbit (von Woerkom 53).
- Ice albedo α_p :
 - Typically linear:

$$\alpha_p = a_1 - b_1 T$$
 (Budyko 69, Sellers 69)

For Fraedrich:

$$\alpha_p = a_2 - b_2 T^2$$

$$R \uparrow = \epsilon_{sa}\sigma T^4 = \epsilon_s\sigma T^4 - \epsilon_a\sigma T^4,$$

(Stefan-Boltzmann)

•
$$\epsilon_{sa} = \epsilon_s - \epsilon_a$$

Remark: This is not standard: photosphere vs. surface temperatures. Usually, a linear approximation is used.

$$R \uparrow = \epsilon_{sa}\sigma T^4 = \epsilon_s\sigma T^4 - \epsilon_a\sigma T^4,$$

(Stefan-Boltzmann)

- $\epsilon_{sa} = \epsilon_s \epsilon_a$
 - where ϵ_s is surface emittance, ϵ_a is atmospheric emittance.

Remark: This is not standard: photosphere vs. surface temperatures. Usually, a linear approximation is used.

$$R \uparrow = \epsilon_{sa}\sigma T^4 = \epsilon_s\sigma T^4 - \epsilon_a\sigma T^4,$$

(Stefan-Boltzmann)

- $\epsilon_{sa} = \epsilon_s \epsilon_a$
 - where ϵ_s is surface emittance, ϵ_a is atmospheric emittance.
 - both emittance values are first assumed to be constants

Remark: This is not standard: photosphere vs. surface temperatures. Usually, a linear approximation is used.

Picture of temp feedbacks (from p. 149)

Use equations

$$c\frac{dT}{dt} = R \downarrow -R \uparrow;$$
(1)
$$R \downarrow = \frac{1}{4}\mu I_0(1 - \alpha_p),$$
(2)

where α_p is a constant;

$$R\uparrow = \epsilon_{sa}\sigma T^4, \tag{3}$$

where $\epsilon_{sa} = \epsilon_s - \epsilon_a$, which are constants. Let $x = (\mu, \alpha_p, \epsilon_s, \epsilon_a, c)$.

Let $\frac{dT}{dt} = f(T; x)$, where x is the vector of parameter values. Let $T_e(x)$ stand for the temperature(s) at which $\frac{dT}{dt}\Big|_{T_e} = f(T_e; x) = 0$.

• Linearization about $T = T_e$:

$$dT/dt \approx f(T_e; x) + \frac{df}{dT} |_{T_e} (T - T_e) = -\lambda (T - T_e).$$

Let $\frac{dT}{dt} = f(T; x)$, where x is the vector of parameter values. Let $T_e(x)$ stand for the temperature(s) at which $\frac{dT}{dt}\Big|_{T_e} = f(T_e; x) = 0$.

• Linearization about $T = T_e$:

$$dT/dt \approx f(T_e; x) + \frac{df}{dT} |_{T_e} (T - T_e) = -\lambda (T - T_e).$$

• Equilibria: $f(T_e; x) = 0$.

Let $\frac{dT}{dt} = f(T; x)$, where x is the vector of parameter values. Let $T_e(x)$ stand for the temperature(s) at which $\frac{dT}{dt}\Big|_{T_e} = f(T_e; x) = 0$.

• Linearization about $T = T_e$:

$$dT/dt \approx f(T_e; x) + \frac{df}{dT}\Big|_{T_e}(T - T_e) = -\lambda(T - T_e).$$

• Equilibria:
$$f(T_e; x) = 0$$
.

Stable:

$$-\lambda = \frac{df}{dT}\Big|_{T_e} < 0,$$

Let $\frac{dT}{dt} = f(T; x)$, where x is the vector of parameter values. Let $T_e(x)$ stand for the temperature(s) at which $\frac{dT}{dt}\Big|_{T_e} = f(T_e; x) = 0$.

• Linearization about $T = T_e$:

$$dT/dt \approx f(T_e; x) + \frac{df}{dT}\Big|_{T_e}(T - T_e) = -\lambda(T - T_e).$$

• Equilibria:
$$f(T_e; x) = 0$$
.

Stable:

$$-\lambda = \frac{df}{dT}\big|_{T_e} < 0,$$

Unstable:

$$-\lambda = \frac{df}{dT}\big|_{T_e} > 0.$$

Want:

$$f(T_e; x) = 0,$$

$$\frac{df}{dT}\Big|_{T_e} = \frac{d}{dT}\frac{1}{c}\left(-\epsilon_{sa}\sigma T^4 + \frac{1}{4}\mu I_0(1-\alpha_p)\right)\Big|_{T_e}$$

$$= -4(\epsilon_{sa}\sigma/c)T_e^3 < 0.$$

We have a single, stable equilibrium:

$$T_e = \sqrt[4]{\frac{\mu l_0}{4\epsilon_{sa}\sigma}(1-\alpha_p)}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Want:

$$\begin{split} f(T_e; x) &= 0, \\ \frac{df}{dT} \Big|_{T_e} &= \frac{d}{dT} \frac{1}{c} \left(-\epsilon_{sa} \sigma T^4 + \frac{1}{4} \mu I_0 (1 - \alpha_p) \right) \Big|_{T_e} \\ &= -4 (\epsilon_{sa} \sigma/c) T_e^3 < 0. \end{split}$$

We have a single, stable equilibrium:

$$T_e = \sqrt[4]{\frac{\mu l_0}{4\epsilon_{sa}\sigma}(1-\alpha_p)}.$$

12 Apr 2016 11 / 36

First model - solution

$$T_e = \sqrt[4]{\frac{\mu I_0}{4\epsilon_{sa}\sigma}(1-\alpha_{\rho})}.$$

Use

$$x_0 = (\alpha_{p0} = 0284, \ \epsilon_{sa0} = 0.62, \ \mu_0 = 1, \ c_0 = 10^8 kg K^{-1} s^{-2}),$$

and to get the "present day" (1979) averaged equilibrium: $T_{e0} = 288.6K$.

First model - equilibrium diagram

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

First model - phase portrait

12 Apr 2016 14 / 36

Second model - ice albedo

• Albedo is not constant

Second model - ice albedo

- Albedo is not constant
- Albedo is usually taken as linear

$$\alpha_{p0} = a_{10} - b_{10}T,$$

where the 0 stands for "present day" values.

Second model - ice albedo

- Albedo is not constant
- Albedo is usually taken as linear

$$\alpha_{p0} = a_{10} - b_{10}T,$$

where the 0 stands for "present day" values.

Fraedrich uses

$$\alpha_{p0} = a_{20} - b_{20} T^2,$$

where a_{20} and b_{20} are chosen to match present day albedo, and

$$\alpha_{p0} = \frac{d(a_{10} - b_{10}T)}{dt}$$

at present day.

This time,

$$\frac{dT}{dt} = (1/c) \left(-\epsilon_{sa} \sigma T^4 + \frac{1}{4} \mu I_0 b_2 T^2 + \frac{1}{4} \mu I_0 (1-a_2) \right) = f(T;x).$$

The equilibria T_e are again where $f(T_e; x) = 0$, where

$$x = (a_2, b_2, \epsilon_{sa}, \mu, c).$$

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim CI

Equilibria are (positive) solutions to

$$T_e^4 - mT_e^2 + n = 0,$$

where $m = \frac{\mu l_0}{4\epsilon_{sa}\sigma}b_2,$
 $n = -\frac{\mu l_0}{4\epsilon_{sa}\sigma}(1 - a_2).$

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

•
$$T_e^4 - mT_e^2 + n = 0$$

$$m = \frac{\mu I_0}{4\epsilon_{sa}\sigma}b_2, \ n = -\frac{\mu I_0}{4\epsilon_{sa}\sigma}(1-a_2).$$

•
$$T_e^4 - mT_e^2 + n = 0$$

 $m = \frac{\mu l_0}{4\epsilon_{sa}\sigma}b_2, \ n = -\frac{\mu l_0}{4\epsilon_{sa}\sigma}(1 - a_2).$
• $T_e^{\pm} = \sqrt{\frac{1}{2}m \pm \sqrt{\frac{1}{4}m^2 - n}}$

•
$$T_e^4 - mT_e^2 + n = 0$$

 $m = \frac{\mu I_0}{4\epsilon_{sa}\sigma}b_2, \ n = -\frac{\mu I_0}{4\epsilon_{sa}\sigma}(1 - a_2).$
• $T_e^{\pm} = \sqrt{\frac{1}{2}m \pm \sqrt{\frac{1}{4}m^2 - n}}$
• There are 0, 1, or 2 solutions, depending on the values of m, n .

•
$$T_e^4 - mT_e^2 + n = 0$$

$$m = \frac{\mu l_0}{4\epsilon_{sa}\sigma}b_2, \ n = -\frac{\mu l_0}{4\epsilon_{sa}\sigma}(1-a_2).$$

•
$$T_e^{\pm} = \sqrt{\frac{1}{2}m \pm \sqrt{\frac{1}{4}m^2 - n}}$$

There are 0, 1, or 2 solutions, depending on the values of m, n.
 ▶ What is the sign of ¹/₄m² − n?

Equilibria:

$$T_e^{\pm} = \sqrt{\frac{1}{2}m \pm \sqrt{\frac{1}{4}m^2 - n}},$$
$$\frac{dT}{dt} = \frac{1}{c}f(T; x),$$

Assume at least one solution $(\frac{1}{4}m^2 - n \ge 0)$ Determine the stability the same way as in the trivial model.

• Linearize about T_e : $T(t;x) \approx \frac{df}{dT} \Big|_{T_e} (T - T_e)$

Equilibria:

$$T_e^{\pm} = \sqrt{\frac{1}{2}m \pm \sqrt{\frac{1}{4}m^2 - n}},$$
$$\frac{dT}{dt} = \frac{1}{c}f(T; x),$$

Assume at least one solution $(\frac{1}{4}m^2 - n \ge 0)$ Determine the stability the same way as in the trivial model.

• Linearize about T_e : $T(t;x) \approx \frac{df}{dT} |_{T_e} (T - T_e)$

Stable:

$$-\frac{4\epsilon_{sa}}{c}\left(T_e^2-m/2\right)\,T_e<0$$

Equilibria:

$$T_e^{\pm} = \sqrt{\frac{1}{2}m \pm \sqrt{\frac{1}{4}m^2 - n}},$$
$$\frac{dT}{dt} = \frac{1}{c}f(T; x),$$

Assume at least one solution $(\frac{1}{4}m^2 - n \ge 0)$ Determine the stability the same way as in the trivial model.

• Linearize about T_e : $T(t;x) \approx \frac{df}{dT} |_{T_e} (T - T_e)$

Stable:

$$-\frac{4\epsilon_{sa}}{c}\left(T_e^2-m/2\right)\,T_e<0$$

• Unstable:

$$-\frac{4\epsilon_{sa}}{c}\left(T_e^2-m/2\right)\,T_e>0$$

Equilibria:

$$T_e^{\pm} = \sqrt{\frac{1}{2}m \pm \sqrt{\frac{1}{4}m^2 - n}},$$
$$\frac{dT}{dt} = \frac{1}{c}f(T; x),$$

Assume at least one solution $(\frac{1}{4}m^2 - n \ge 0)$ Determine the stability the same way as in the trivial model.

• Linearize about T_e : $T(t;x) \approx \frac{df}{dT} |_{T_e} (T - T_e)$

Stable:

$$-\frac{4\epsilon_{sa}}{c}\left(T_e^2-m/2\right)T_e<0$$

• Unstable:

$$-\frac{4\epsilon_{sa}}{c}\left(T_e^2-m/2\right)T_e>0$$

• T_e^+ stable, T_e^- unstable

Second model - ice albedo - equilibria

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

Second model - ice albedo - phase portrait

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

Second model - bifurcation diagram

12 Apr 2016 22 / 36

Greenhouse feedback, no ice albedo:

$$crac{dT}{dt} = R\downarrow -R\uparrow$$

with

$$R\downarrow = \frac{1}{4}\mu I_0(1-\alpha_p),$$

where α_p is held constant;

$$R \uparrow = \epsilon_s \sigma T^4 - \epsilon_a \sigma T^4,$$

where $\epsilon_a = \epsilon_c + \kappa T^2$, (ϵ_c is CO_2 emittance), so

$$R \uparrow = \epsilon_s \sigma T^4 - \epsilon_c \sigma T^4 - \kappa \sigma T^6.$$

Combining the previous equations gives

$$\frac{dT}{dt} = \frac{1}{c} \left(\kappa \sigma T^6 - \epsilon_{sc} \sigma T^4 + \frac{1}{4} \mu I_0 (1 - \alpha_p) \right),$$

where $\epsilon_{sc} = \epsilon_s - \epsilon_c$. Equilibria satisfy

$$T_e^6 - \frac{\epsilon_{sc}}{\kappa} T_e^4 + \frac{\mu I_0}{4\kappa\sigma} (1 - \alpha_p) = 0.$$

Third model - equilibria

Equilibria:

$$T_e^6 - \frac{\epsilon_{sc}}{\kappa} T_e^4 + \frac{\mu l_0}{4\kappa\sigma} (1 - \alpha_p) = 0.$$

To solve, let $y = -\frac{\epsilon_{sc}}{3\kappa} + T_e^2$ and get

$$y^3-uy+v=0,$$

where

$$u = 3\left(\frac{\epsilon_{sc}}{3\kappa}\right)^2$$
, $v = -2\left(\frac{\epsilon_{sc}}{3\kappa}\right)^3 + \frac{\mu l_0}{4\kappa\sigma}(1-\alpha_p)$.

We get

$$T_e = \sqrt{rac{\epsilon_{sc}}{3\kappa} + 2\sqrt{u/3}A},$$

where A depends on u and v.

Third model - equilibria diagram

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

Third model - phase portrait

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

Third model - bifurcation diagram

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

12 Apr 2016 28 / 36

Combining greenhouse temperature feedback and ice temperature feedback:

$$\alpha_p = a_2 - b_2 T^2, \ \epsilon_a = \epsilon_c + \kappa T^2,$$

we get

$$\frac{dT}{dt} = \frac{1}{c} \left(\kappa \sigma T^6 - \epsilon_{sc} \sigma T^4 + \frac{1}{4} \mu I_0 b_2 T^2 + \frac{1}{4} \mu I_0 (1 - a_2) \right).$$

The equilibria are solutions to

$$T_e^6 - T_e^4 \frac{\epsilon_{sc}}{\kappa} + T_e^2 \left(\frac{\mu I_0}{4\kappa\sigma}\right) b_2 + \frac{\mu I_0}{4\kappa\sigma}(1-a_2) = 0.$$

12 Apr 2016 29 / 36

Fourth model - solving

$$T_e^6 - T_e^4 \frac{\epsilon_{sc}}{\kappa} + T_e^2 \left(\frac{\mu I_0}{4\kappa\sigma}\right) b_2 + \frac{\mu I_0}{4\kappa\sigma}(1 - a_2) = 0$$

Let $y = -\frac{\epsilon_{sc}}{3\kappa} + T_e^2$, and this becomes
 $y^3 - py + q = 0$,

where

$$p = 3\left(\frac{\epsilon_{sc}}{3\kappa}\right)^2 - \frac{\mu l_0}{4\kappa\sigma}b_2$$
$$q = -2\left(\frac{\epsilon_{sc}}{3\kappa}\right)^3 + \frac{\epsilon_{sc}\mu l_0}{3\cdot 4\kappa^2\sigma}b_2 + \frac{\mu l_0}{4\kappa\sigma}(1-a_2).$$

The parameters are $x = (a_2, b_2, \epsilon_s, \epsilon_c, \kappa, \mu)$.

12 Apr 2016 30 / 36

At $T = T_e$, stability is determined by

$$-\lambda = \frac{df}{dT}\Big|_{T_e} = \frac{\kappa\sigma}{c} \left(T_e^4 - \frac{2\epsilon_{sc}}{3\kappa}T_e^2 + \frac{\mu I_0 b_2}{4\cdot 3\kappa\sigma}\right) 6T_e$$

• Stable:
$$-\lambda < 0$$

With certain parameter values, there are three equilibrium branches: one attractor, two repellers.

At $T = T_e$, stability is determined by

$$-\lambda = \frac{df}{dT}\Big|_{T_e} = \frac{\kappa\sigma}{c} \left(T_e^4 - \frac{2\epsilon_{sc}}{3\kappa}T_e^2 + \frac{\mu I_0 b_2}{4\cdot 3\kappa\sigma}\right) 6T_e$$

• Stable:
$$-\lambda < 0$$

• Unstable:
$$-\lambda > 0$$

With certain parameter values, there are three equilibrium branches: one attractor, two repellers.

Fourth model - equilibria diagram

12 Apr 2016 32 / 36

Fourth model - phase portrait

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl

Fourth model - bifurcation diagram

Fourth model - some perspective

12 Apr 2016 35 / 36

K. Fraedrich. "Catastrophes and resilience of a zero-dimensional climate system with ice-albedo and greenhouse feedback." *Quart. J. R. Met. Soc.* 105, 147-167 (1979).