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Motivation: exhibit catastrophes in realistic situations

K. Fraedrich, “Catastrophes and resilience of a zero dim’l climate system w/ ice-albedo and greenhouse feedback” Quart. J. R.
Met. Soc. (1979)

Definition

A catastrophe is a singularity (of a smooth map), exhibited by (small)
changes of an external parameter.

The names for catastrophes and bifurcations differ, but they refer to
the same phenomena.

For example, a “fold catastrophe” might otherwise be known as a
“saddle-node” bifurcation. A “cusp catastrophe” is where two
saddle-node bifurcations coalesce.

The author’s goal is to exhibit fold catastrophes and cusp
catastrophes.
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Outline

1 Background

(i) Radiation in and out

(ii) Potentially critical flaws

2 Adding complexity

(i) No feedback
(ii) Just ice albedo feedback

(iii) Just greenhouse feedback
(iv) Ice albedo and greenhouse feedback

3 Along the way: bifurcation diagrams
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Basic Assumptions

Zero dimensional: no physical, geometric dimensions.

There are external parameters
I ice albedo
I outgoing radiation constants
I insolation constants
I etc.

No physical difference between poles and equator

Perfect internal circulation

Most important factor: incoming and outgoing radiation

c
dT

dt
= R ↓ −R ↑
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Assumptions

c
dT

dt
= R ↓ −R ↑,

where

T is temperature,

t is time, and

R ↓ and R ↑ are incoming and outgoing radiation.

Here, c is a positive constant, determined by external measurements.
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Assumptions: incoming radiation

R ↓= 1

4
µI0(1− αp).

I0 and µ are used to account for variations in the solar constant,
planetary orbit (von Woerkom 53).

Ice albedo αp:

I Typically linear:

αp = a1 − b1T (Budyko 69, Sellers 69)

I For Fraedrich:
αp = a2 − b2T

2
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Assumptions: outgoing radiation

R ↑= εsaσT
4 = εsσT

4 − εaσT 4,

(Stefan-Boltzmann)

εsa = εs − εa

I where εs is surface emittance, εa is atmospheric emittance.
I both emittance values are first assumed to be constants

Remark: This is not standard: photosphere vs. surface temperatures.
Usually, a linear approximation is used.
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Picture of temp feedbacks (from p. 149)
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First model

Use equations

c
dT

dt
= R ↓ −R ↑; (1)

R ↓= 1

4
µI0(1− αp), (2)

where αp is a constant;

R ↑ = εsaσT
4, (3)

where εsa = εs − εa, which are constants.
Let x = (µ, αp, εs , εa, c).
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First model - solving

Let dT
dt = f (T ; x), where x is the vector of parameter values.

Let Te(x) stand for the temperature(s) at which dT
dt

∣∣
Te

= f (Te ; x) = 0.

Linearization about T = Te :

dT/dt ≈ f (Te ; x) +
df

dT

∣∣
Te

(T − Te) = −λ(T − Te).

Equilibria: f (Te ; x) = 0.

I Stable:

−λ =
df

dT

∣∣
Te
< 0,

I Unstable:

−λ =
df

dT

∣∣
Te
> 0.
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First model - solving

Want:

f (Te ; x) = 0,

df

dT

∣∣
Te

=
d

dT

1

c

(
−εsaσT 4 +

1

4
µI0(1− αp)

) ∣∣
Te

= −4(εsaσ/c)T 3
e < 0.

We have a single, stable equilibrium:

Te = 4

√
µI0

4εsaσ
(1− αp).
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First model - solution

Te = 4

√
µI0

4εsaσ
(1− αp).

Use

x0 =
(
αp0 = 0284, εsa0 = 0.62, µ0 = 1, c0 = 108kgK−1s−2

)
,

and to get the “present day” (1979) averaged equilibrium: Te0 = 288.6K .
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First model - equilibrium diagram

p. 152
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First model - phase portrait

p. 152
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Second model - ice albedo

Albedo is not constant

Albedo is usually taken as linear

αp0 = a10 − b10T ,

where the 0 stands for “present day” values.

Fraedrich uses
αp0 = a20 − b20T

2,

where a20 and b20 are chosen to match present day albedo, and

αp0 =
d(a10 − b10T )

dt

at present day.
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Second model - ice albedo feedback

This time,

dT

dt
= (1/c)

(
−εsaσT 4 +

1

4
µI0b2T

2 +
1

4
µI0(1− a2)

)
= f (T ; x).

The equilibria Te are again where f (Te ; x) = 0, where

x = (a2, b2, εsa, µ, c).
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Second model - equilibria

Equilibria are (positive) solutions to

T 4
e −mT 2

e + n = 0,

where m =
µI0

4εsaσ
b2,

n = − µI0
4εsaσ

(1− a2).
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Second model - ice albedo - new parameters

Allowing µ to vary:

T 4
e −mT 2

e + n = 0

m =
µI0

4εsaσ
b2, n = − µI0

4εsaσ
(1− a2).

T±
e =

√
1
2m ±

√
1
4m

2 − n

There are 0, 1, or 2 solutions, depending on the values of m, n.

I What is the sign of 1
4m

2 − n?
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Second model - stability of equilibria

Equilibria:

T±
e =

√
1

2
m ±

√
1

4
m2 − n,

dT

dt
=

1

c
f (T ; x),

Assume at least one solution (14m
2 − n ≥ 0) Determine the stability the

same way as in the trivial model.

Linearize about Te : T (t; x) ≈ df
dT

∣∣
Te

(T − Te)

Stable:

−4εsa
c

(
T 2
e −m/2

)
Te < 0

Unstable:

−4εsa
c

(
T 2
e −m/2

)
Te > 0

T+
e stable, T−

e unstable
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Second model - ice albedo - equilibria
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Second model - ice albedo - phase portrait
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Second model - bifurcation diagram

Equilibria: T±
e =

√
1
2m ±

√
1
4m

2 − n
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Third model

Greenhouse feedback, no ice albedo:

c
dT

dt
= R ↓ −R ↑

with

R ↓= 1

4
µI0(1− αp),

where αp is held constant;

R ↑= εsσT
4 − εaσT 4,

where εa = εc + κT 2, (εc is CO2 emittance), so

R ↑= εsσT
4 − εcσT 4 − κσT 6.
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Third model - equilibria

Combining the previous equations gives

dT

dt
=

1

c

(
κσT 6 − εscσT 4 +

1

4
µI0(1− αp)

)
,

where εsc = εs − εc .
Equilibria satisfy

T 6
e −

εsc
κ
T 4
e +

µI0
4κσ

(1− αp) = 0.
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Third model - equilibria

Equilibria:

T 6
e −

εsc
κ
T 4
e +

µI0
4κσ

(1− αp) = 0.

To solve, let y = − εsc
3κ + T 2

e and get

y3 − uy + v = 0,

where

u = 3
(εsc

3κ

)2
, v = −2

(εsc
3κ

)3
+
µI0
4κσ

(1− αp).

We get

Te =

√
εsc
3κ

+ 2
√
u/3A,

where A depends on u and v .
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Third model - equilibria diagram
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Third model - phase portrait
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Third model - bifurcation diagram
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Forth model - CO2 and ice

Combining greenhouse temperature feedback and ice temperature
feedback:

αp = a2 − b2T
2, εa = εc + κT 2,

we get

dT

dt
=

1

c

(
κσT 6 − εscσT 4 +

1

4
µI0b2T

2 +
1

4
µI0(1− a2)

)
.

The equilibria are solutions to

T 6
e − T 4

e

εsc
κ

+ T 2
e

(
µI0
4κσ

)
b2 +

µI0
4κσ

(1− a2) = 0.
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Fourth model - solving

T 6
e − T 4

e

εsc
κ

+ T 2
e

(
µI0
4κσ

)
b2 +

µI0
4κσ

(1− a2) = 0

Let y = − εsc
3κ + T 2

e , and this becomes

y3 − py + q = 0,

where

p = 3
(εsc

3κ

)2
− µI0

4κσ
b2

q = −2
(εsc

3κ

)3
+

εscµI0
3 · 4κ2σ

b2 +
µI0
4κσ

(1− a2).

The parameters are x = (a2, b2, εs , εc , κ, µ).
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Fourth model - stability

At T = Te , stability is determined by

−λ =
df

dT

∣∣
Te

=
κσ

c

(
T 4
e −

2εsc
3κ

T 2
e +

µI0b2
4 · 3κσ

)
6Te

Stable: −λ < 0

Unstable: −λ > 0

With certain parameter values, there are three equilibrium branches: one
attractor, two repellers.
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Fourth model - equilibria diagram
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Fourth model - phase portrait
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Fourth model - bifurcation diagram
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Fourth model - some perspective

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Climate System 12 Apr 2016 35 / 36



References

1 K. Fraedrich. “Catastrophes and resilience of a zero-dimensional
climate system with ice-albedo and greenhouse feedback.” Quart. J.
R. Met. Soc. 105, 147-167 (1979).

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Climate System 12 Apr 2016 36 / 36


