Catastrophes and Resilience of a Zero-Dim Climate

System

Shannon Negaard
University of Minnesota

12 Apr 2016

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl 12 Apr 2016 1/36



Motivation: exhibit catastrophes in realistic situations

K. Fraedrich, “Catastrophes and resilience of a zero dim’l climate system w/ ice-albedo and greenhouse feedback” Quart. J. R.
Met. Soc. (1979)

Definition
A catastrophe is a singularity (of a smooth map), exhibited by (small)
changes of an external parameter.

@ The names for catastrophes and bifurcations differ, but they refer to
the same phenomena.
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Motivation: exhibit catastrophes in realistic situations

K. Fraedrich, “Catastrophes and resilience of a zero dim’l climate system w/ ice-albedo and greenhouse feedback” Quart. J. R.
Met. Soc. (1979)

Definition
A catastrophe is a singularity (of a smooth map), exhibited by (small)
changes of an external parameter.

@ The names for catastrophes and bifurcations differ, but they refer to
the same phenomena.

@ For example, a “fold catastrophe” might otherwise be known as a
“saddle-node” bifurcation. A “cusp catastrophe” is where two
saddle-node bifurcations coalesce.

@ The author's goal is to exhibit fold catastrophes and cusp
catastrophes.
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© Background
(i) Radiation in and out
(ii) Potentially critical flaws
© Adding complexity
(i) No feedback
(i) Just ice albedo feedback
(i) Just greenhouse feedback
(iv) Ice albedo and greenhouse feedback

© Along the way: bifurcation diagrams
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Basic Assumptions

@ Zero dimensional: no physical, geometric dimensions.
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Basic Assumptions

Zero dimensional: no physical, geometric dimensions.

@ There are external parameters

> ice albedo

» outgoing radiation constants
» insolation constants

> etc.

No physical difference between poles and equator

Perfect internal circulation

Most important factor: incoming and outgoing radiation

dT
Z_-R|-R
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dT
Z_—-R|-R
c =R,

where
o T is temperature,
@ tis time, and
@ R | and R 1 are incoming and outgoing radiation.

Here, c is a positive constant, determined by external measurements.
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Assumptions: incoming radiation

1
R |= Zulo(l — ap).

@ Iy and p are used to account for variations in the solar constant,
planetary orbit (von Woerkom 53).
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Assumptions: incoming radiation

1
R |= Zulo(l — ap).

@ Iy and p are used to account for variations in the solar constant,
planetary orbit (von Woerkom 53).
@ Ice albedo ayp:
» Typically linear:

ap, =a; — by T (Budyko 69, Sellers 69)

» For Fraedrich:
Op = d — b2 T2
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Assumptions: outgoing radiation

R T: €550 T4 = €50 T4 - 630T47

(Stefan-Boltzmann)

@ €55 = €5 — €,

Remark: This is not standard: photosphere vs. surface temperatures.
Usually, a linear approximation is used.
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Assumptions: outgoing radiation

R T: €550 T4 = €50 T4 - 630T47

(Stefan-Boltzmann)
@ €55 = €5 — €,
» where ¢, is surface emittance, €, is atmospheric emittance.
» both emittance values are first assumed to be constants

Remark: This is not standard: photosphere vs. surface temperatures.
Usually, a linear approximation is used.
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Picture of temp feedbacks (from p. 149)
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First model

Use equations

I —RL-RY, (1)
R1= qub(1 — o). 2)

where a, is a constant;
R1 =eso T, (3)

where €5; = €5 — €5, which are constants.
Let x = (u, ap, €s, €4, C).
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First model - solving

Let 4T = £(T;x), where x is the vector of parameter values.

Let Te( ) stand for the temperature(s) at which 4T ‘T = f(Te;x) =0.

@ Linearization about T = T,:

df

dT /dt ~ F(Teix) + = |7, (

T—Te)=—-XNT — Te).
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First model - solving

Let 4T = £(T;x), where x is the vector of parameter values.

Let T (x) stand for the temperature(s) at which 4T ‘T = f(Te;x) =0.

@ Linearization about T = T,:

dT /dt ~ f(Te; x) + (T—Te)=—-\NT - Te).

d |
dT '
e Equilibria: f(Te;x) =0.
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First model - solving

Let 4T = £(T;x), where x is the vector of parameter values.

Let T (x) stand for the temperature(s) at which 4T ‘T = f(Te;x) =0.

@ Linearization about T = T,:

d
dT/dt ~ f(Teix) + = (T = Te) = =N(T = To).
e Equilibria: f(Te;x) =0.
» Stable: of
- ﬁ‘ 0,
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First model - solving

Let 4T = £(T;x), where x is the vector of parameter values.
Let T (x) stand for the temperature(s) at which 4T ‘T = f(Te;x) =0.

@ Linearization about T = T,:
df
dT/dt ~ f(Teix) + = (T = Te) = =N(T = To).

e Equilibria: f(Te;x) =0.

» Stable: df
-A ﬁ‘ <0,

» Unstable: o
A= — .
dT 0

12 Apr 2016
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First model - solving

Want:

f(Te;x) =0,

df d 1 , 1
ﬁ T. = ﬁ; <—€530'T + Z,LLIO(]. - OZp)) ’Te

= —4(esy0/c) TS < 0.

We have a single, stable equilibrium:




First model - solving

Want:

f(Te;x) =0,
df
dT

d1
= T e < €sa0 T+ /,6/0(1 )) ’Te

= —4(esy0/c) TS < 0.

We have a single, stable equilibrium:
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First model - solution

Use
xo = (apo = 0284, €50 = 0.62, g =1, co = 10%kgk1s7?),

and to get the “present day” (1979) averaged equilibrium: T = 288.6K.
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First model - equilibrium diagram
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First model - phase portrait
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Second model - ice albedo

@ Albedo is not constant
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Second model - ice albedo

@ Albedo is not constant

o Albedo is usually taken as linear
apo = aip — bio T,

where the 0 stands for “present day” values.
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Second model - ice albedo

@ Albedo is not constant

o Albedo is usually taken as linear
apo = aip — bio T,

where the 0 stands for “present day” values.

@ Fraedrich uses
2
Qpo = axp — b T,

where ayg and bpg are chosen to match present day albedo, and

~ d(awo— b1 T)
A0 = dt

at present day.
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Second model - ice albedo feedback

This time,

dT 1 1
5 = X/0) <—EsaUT4 + 4 bz T + 2Ho(1 — az)) =f(T;x).

The equilibria T, are again where f( Te; x) = 0, where

X = (327 b27 €sa, U, C)'
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Second model - equilibria

Equilibria are (positive) solutions to

T2 —-mT2+n=0,
plo
€520

pho

where m =
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Second model - ice albedo - new parameters

Allowing u to vary:
o TH—mT2+n=0
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Second model - ice albedo - new parameters

Allowing u to vary:
o TH—mT2+n=0

who plo
= by, n=— 1—a).
4ega0 2 46530'( 2)
° Tei:\/%m:t im?—n
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Second model - ice albedo - new parameters

Allowing u to vary:
o TH—mT2+n=0

who
= by, n=— 1—a).
deg 0 2 46530'( 2)

° Tei:\/%m:t\/}‘m2—n

@ There are 0, 1, or 2 solutions, depending on the values of m, n.
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Second model - ice albedo - new parameters

Allowing u to vary:
o TH—mT2+n=0

who
= by, n=— 1—a).
deg 0 2 46530'( 2)

° Tei:\/%m:t\/}‘m2—n

@ There are 0, 1, or 2 solutions, depending on the values of m, n.
» What is the sign of %m2 —n?
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Second model - stability of equilibria

Equilibria:
\/ m =+ fm2—n

1
=—f(T;x
dt c ( )
Assume at least one solution (%m2 — n > 0) Determine the stability the

same way as in the trivial model.
o Linearize about T.: T(t;x) ~ d—T

(T_ Te)
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Second model - stability of equilibria

Equilibria:
\/ m =+ fm2—n

1
=—f(T;x
dt c ( )
Assume at least one solution (%m2 — n > 0) Determine the stability the

same way as in the trivial model.
~ df
o Linearize about Te: T(t;x) ~ 77|+
o Stable:

(T_ Te)

_4€Csa (T2=m/2) T. <0
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Second model - stability of equilibria

Equilibria:
\/ m =+ fm2—n

1
= Cf(T x),

dt

Assume at least one solution (%m2 — n > 0) Determine the stability the

same way as in the trivial model.

@ Linearize about Te: T(t;x) = dﬁ- (T— Te)
o Stable: 4
€
_ Csa (TZ2-m/2) Te <0
@ Unstable:
deg,

- (T2-m/2) Te >0
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Second model - stability of equilibria

Equilibria:
\/ m =+ fm2—n

1
= Cf(T x),

dt

Assume at least one solution (%m2 — n > 0) Determine the stability the

same way as in the trivial model.

@ Linearize about Te: T(t;x) = dﬁ- (T— Te)
o Stable: 4
€
_ Csa (TZ2-m/2) Te <0
@ Unstable:
deg,

- (T2-m/2) Te >0

e T. stable, T, unstable
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Second model - ice albedo - equilibria
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Second model - ice albedo - phase portrait
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Second model - bifurcation diagram
Equilibria: TS = \/ém +4/im? —n
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Third model

Greenhouse feedback, no ice albedo:

dT
~—— =R|-R
S l )

with 1
R = Zih(1 — ap),

where «y, is held constant;
R1=esoT* — €0 TH,
where ¢, = ¢ + kT2, (€. is CO, emittance), so

R 1= esoTH —ecoT? — ko T,
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Third model - equilibria

Combining the previous equations gives

dr 1 1

Sl <KZO’T6 —esco T+ Z,u,lo(l — ap)) ,
where €. = €5 — €.

Equilibria satisfy
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Third model - equilibria

Equilibria:

€ o
Te :: T4 W(l—ap) =0.

To solve, let y = —5< + T2 and get

v i—uy+v=0,

where ) .
€ € Hio
S5 v a(5) e
“ 3K 3 4/10( )
We get
T, = ;i; +21/u/3A,

where A depends on u and v.

Shannon Negaard (University of Minnesota) Catastrophes and Resilience of a Zero-Dim Cl 12 Apr 2016 25 / 36



Third model - equilibria diagram
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Third model - phase
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Third model - bifurcation diagram
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Forth model - CO, and ice

Combining greenhouse temperature feedback and ice temperature
feedback:

2 2
ap=ay—bT°, eg=¢€+rKT",

we get

dT 1

1 1
Pl (I@’O’Tﬁ —esco T+ Zulobg T2 + Z“IO(I — az)) .

The equilibria are solutions to

I i
TS—T;‘E“+T3<“°)1)2+ a
K

0
dko dko

(1—32):0.
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Fourth model - solving

/ wlo
[P ey Y e PO a)=0
¢ ° K tle 4o b2+4fw( 22)

Let y = —5< + T2, and this becomes
v —py+q=0,

where

p=3<6“)2—“—l"

3k drko
€sc\3 Esciilo plo
-2 (7) b 1— a).
9 3k + 3. 4r20 2 + 4/<ccr( 22)

The parameters are x = (a2, bo, €5, €c, K, f).
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Fourth model - stability

At T = T, stability is determined by

Ko 2¢ wlobo
= (TF-==xT72 6T,
Te C < é 3k € * 4 .3k0 €

df

_)\:ﬁ

@ Stable: =\ <0

With certain parameter values, there are three equilibrium branches: one
attractor, two repellers.
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Fourth model - stability

At T = T, stability is determined by

Ko 2¢ wlobo
= (TF-==xT72 6T,
Te C ( é 3k € * 4 .3k0 €

df

_)\:ﬁ

@ Stable: =\ <0
@ Unstable: —A >0

With certain parameter values, there are three equilibrium branches: one
attractor, two repellers.
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Fourth model - equilibria diagram
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Fourth model - phase portrait
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Fourth model - bifurcation diagram
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Fourth model - some perspective
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