Background 000	Dynamics of the Ice Line	Insolation in EBMs 0000	Future Work 00000	References

Dynamics of Energy Balance Models for Planetary Climate

Alice Nadeau

University of Minnesota

April 13, 2016

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background • ○ ○ Dynamics of the Ice Line

Insolation in EBMs 0000 Future Work

References

500

Motivation

- Low dimensional climate models are important for understanding the predominant forces affecting the climate of Earth
- Fly-bys of Pluto and other rocky celestial bodies in our solar system have raised interest in other climates

Photos from nasa.gov

Background ○●○ Dynamics of the Ice Line

Insolation in EBMs 0000 Future Work

References

Sac

Energy Balance Models in 1969

- Budyko and Sellers (independently) proposed energy balance models for the Earth (1, 14)
- Wanted to study if another glacial age was possible
- Both models had the same major components: incoming solar radiation, outgoing radiation, and energy transfer:

イロト イポト イヨト イヨト

$$R\Delta T = Q(y)(1 - \alpha(y)) - (A + BT) + \Gamma(T)$$

Background	
000	

Dynamics of the Ice Line

Insolation in EBMs

Future Work

References

Energy Balance Models Today

$$R\frac{\partial T}{\partial t} = Qs(y)(1 - \alpha(y, \eta)) - (A + BT) + \Gamma(T)$$

where

$$\Gamma(T(y,\eta)) = -C\left(T(y,\eta) - \int_0^1 T(\gamma,\eta)d\gamma\right).$$

Widiasih introduced an equation for the dynamics of the ice line, η , in 2012 (18)

$$\frac{d}{dt}\eta = \epsilon(T(y,\eta) - T_c)$$

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Dynamics of the Ice Line

Insolation in EBMs

Future Work

References

"Quadratic Approximation"

In (9) McGehee and Widiasih consider the Budyko-type equation for $y,\eta\in[0,1]$

$$\frac{\partial}{\partial t}T = \frac{1}{R}\left(Qs(y)(1-\alpha(\eta,y)) - (A+BT(y,\eta)) - C\left(T(y,\eta) - \overline{T}\right)\right)$$

with dynamic ice line

$$\dot{\eta} = \rho(T(y,\eta) - T_c)$$

and piecewise constant albedo function

$$\alpha(y,\eta) = \begin{cases} \alpha_w & y < \eta \\ \alpha_0 & y = \eta \\ \alpha_i & y > \eta \end{cases}$$

where

$$\alpha_0 = \frac{\alpha_w + \alpha_i}{2}.$$

Dynamics of the Ice Line 000000

nsolation in EBMs

Future Work

References

Piecewise Function Space

The equilibrium temperature profile can be written

$$T_{\eta}^{*}(y) = \begin{cases} \frac{1}{B+C}(Qs(y)(1-\alpha_{w}) - A + C\overline{T_{\eta}^{*}}) & y < \eta\\ \frac{1}{B+C}(Qs(\eta)(1-\alpha_{0}) - A + C\overline{T_{\eta}^{*}}) & y = \eta\\ \frac{1}{B+C}(Qs(y)(1-\alpha_{i}) - A + C\overline{T_{\eta}^{*}}) & y > \eta \end{cases}$$

which motivates the four-dimensional function space X whose elements are of the form

$$T(y) = \begin{cases} w_0 + \frac{1}{2}z_0 + (w_2 + \frac{1}{2}z_2) p_2(y) & y < \eta \\ w_0 + w_2 p_2(\eta) & y = \eta \\ w_0 - \frac{1}{2}z_0 + (w_2 - \frac{1}{2}z_2) p_2(y) & y > \eta \end{cases}$$

<ロト < 団ト < 豆ト < 豆ト = 三 の < 0</p>

Dynamics of the Ice Line 0000000

Insolation in EBMs

Future Work

References

New Budyko's "Equation"

Reformulating the $\partial_t T$ equation in this function space gives

$$\begin{aligned} R\dot{w}_{0} &= Q(1-\alpha_{0}) - A - Bw_{0} + C\left((\eta - \frac{1}{2})z_{0} + z_{2}\int_{0}^{\eta}p_{2}(y)dy\right) \\ R\dot{z}_{0} &= Q(\alpha_{i} - \alpha_{w}) - (B + C)z_{0} \\ R\dot{w}_{2} &= Qs_{2}(1-\alpha_{0}) - (B + C)w_{2} \\ R\dot{z}_{2} &= Qs_{2}(\alpha_{i} - \alpha_{w}) - (B + C)z_{2} \end{aligned}$$

and the ice line equation becomes

$$R\dot{\eta} = \rho \left(w_0 - \frac{Q(1-\alpha_0)}{B+C} s_2 p_2(\eta) + T_c \right).$$

Write

$$R\dot{w}_{0} = -B(w_{0} - F(\eta))$$

$$R\dot{\eta} = -\rho(w_{0} - G(\eta))$$

Dynamics of the Ice Line

Insolation in EBMs

Future Work

References

(η, w_0) Phase Space

$$\begin{aligned} R\dot{w}_0 &= -B(w_0 - F(\eta)) \\ R\dot{\eta} &= -\rho(w_0 - G(\eta)) \\ R\dot{\eta} &= -\rho(w_0 - G(\eta)) \end{aligned}$$

Dynamics of the Ice Line

nsolation in EBMs

Future Work

References

The Jormungand Model

Define the function

$$\delta(\eta) = egin{cases} -\eta + .35, & \eta < .35 \ 0, & \eta \geq .35 \end{cases}$$

which represents the extent of the bare ice and the Jormungand albedo function

$$\alpha_{J}(y,\eta) = \frac{\alpha_{s} + \alpha_{w}}{2} + \frac{\alpha_{i} - \alpha_{w}}{2} \tanh(M(y-\eta)) + \frac{\alpha_{s} - \alpha_{i}}{2} \tanh(M(y-(\eta+\delta(\eta))))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Jormungand albedo function and Temperature Profile

Widiasih's Theorem still applies with this albedo function
There is a locally attracting invariant manifold

$$\mathcal{P}_J^* = \{(\Phi_J^*(\eta), \eta) : \eta \in \mathbb{R}\}$$

within $\mathcal{O}(\epsilon)$ of the manifold of fixed points

$$\mathcal{T}_J^* = \{(\mathcal{T}_J^*(y,\eta),\eta): \eta \in \mathbb{R}\}$$

Sac

Background	Dynamics of the Ice Line	Insolation in EBMs	Future Work	References
000	○○○○○○●	0000	00000	

Jormungand Bifurcation in the Greenhouse Gas Parameter

Background 000			Dynamics of the Ice Line			Insolation in EBMs ●000			Future Work	References
		-			-		<u> </u>			

Insolation Distribution on Rapidly Spinning Planets

 Actual distribution can be found using orbital parameters (as seen in (5, 8, 17)):

$$s(y,\beta) = rac{2}{\pi^2} \int_0^{2\pi} \sqrt{1 - \left(\sqrt{1 - y^2} \sin\beta \sin\gamma - y \cos\beta\right)^2} \, d\gamma$$

• We use Legendre approximations in EBMs because the above integral doesn't have a closed form expression. Instead use

$$s(y,\beta) = \sum_{n=0}^{\infty} s_{2n}(\beta) p_{2n}(y)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Dynamics of the Ice Line

Insolation in EBMs 000

Future Work

References

Insolation Distribution on Rapidly Spinning Planets

Write the 2n-th degree Legendre polynomial as

$$p_{2n}(y) = \sum_{k=0}^{n} a_{2k} y^{2k}$$

and

$$s_{2n}(\beta) = P_{2n} \sum_{k=0}^{n} a_{2k} c_{2k}(\beta).$$

where

$$c_{2k}(\beta) = \sum_{j=0}^{k} \binom{2k}{2j} \frac{(\sin\beta)^{2(k-j)}(\cos\beta)^{2j}}{\pi^{2}} \cdot \left(\int_{-\pi/2}^{\pi/2} (\cos\hat{\phi})^{2(k+1-j)}(\sin\hat{\phi})^{2j} d\hat{\phi} \right) \left(\int_{0}^{2\pi} (\cos\hat{\theta})^{2(k-j)} d\hat{\theta} \right)$$

Background	Dynamics of the Ice Line	Insolation in EBMs 00●0	Future Work 00000	Reference

Insolation Distribution on Rapidly Spinning Planets

596

Dynamics of the Ice Line

Insolation in EBMs

Future Work

References

Small Integer Spin-Orbit Resonances

Mean annual insolation distributions for obliquity $\beta = 60^{\circ}$ and eccentricity e = .2:

A. Dobrovolskis, "Insolation on exoplanets with eccentricity and obliquity."

Dynamics of the Ice Line

nsolation in EBMs

Future Work

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

Open Questions about Insolation

 Can we quantify when we can use the "rapidly spinning planet" method/formula and still have error less than τ in our approximation?

• Can we find a closed form expression for insolation on planets with small integer resonances?

Dynamics of the Ice Line

Insolation in EBMs 0000 Future Work

References

Open Questions about Insolation

- For a reasonable range of parameter values, the Budyko map for Pluto doesn't have any nontrivial stable fixed points. Why?
 - Could Pluto's "upside down" insolation be playing a factor?
 - Is it because Pluto's insolation is relatively flat?

Background
000

Dynamics of the Ice Line

Insolation in EBMs

Future Work

References

Open Questions about Ice Lines

- Reformulate model to accommodate ice planets
 - Is more than one ice present and how do we account for different albedos?
 - How are the ices situated on the surface? Are ices mixed? Are they layered?

From nasa.gov

Background	
000	

Dynamics of the Ice Line

nsolation in EBMs

Future Work

References

Open Questions about Ice Lines

- Remove symmetry assumptions?
 - Investigate four ice lines $(\eta_{SP}, \eta_{SE}, \eta_{NE}, \eta_{NP})$ with the properties
 - (i) $\eta_{SP}, \eta_{SE}, \eta_{NE}, \eta_{NP} \in [-1, 1].$
 - (ii) $-1 \leq \eta_{SP} \leq \eta_{SE} \leq \eta_{NE} \leq \eta_{NP} \leq 1.$
 - (iii) Ice is located between η_{SP} and η_{SE} and between η_{NE} and η_{NP} .
 - Initial investigations into this case show potential oscillations in the ice line dynamics

Dynamics of the Ice Line

nsolation in EBMs

Future Work

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

References

Other Open Questions Concerning EBMs

- How do we accurately model a planet whose atmosphere "freezes out" (as Pluto's might)?
- Is the diffusion model more accurate for a planet with no oceans? For a planet without an atmosphere?
 - In which cases do we get the same results with both models?
 - In which cases do we get different results?

Background 000		ynamics of the Ice Line 000000	Insolation in EBMs 0000	Future Work 00000	References				
(1)	M. Budyko. " 611-619.	The effect of solar radiation variation	ations on the climate of the Earth	." Tellus, 21 (5): 1969					
(2)		and G. North. "A Stability Theorem for Energy-Balance Climate Models." <i>Journal of the ic Sciences</i> , 36 : 1979. 1178-1188.							
(3)		and J. Coakley. "Analytical Analysis of a Budyko-Type Climate Model." <i>Journal of the Atmospheric</i> 32: 1975. 675-679.							
(4)	A. Dobrovolsk	is. "Spin States and Climates of	Eccentric Exoplanets." Icarus 192	: 2007. 1-23.					
(5)	A. Dobrovolsk	rovolskis. "Insolation patterns on synchronous exoplanets with obliquity." Icarus 204: 2009. 1-10.							
(6)	A. Dobrovolsk	A. Dobrovolskis. "Insolation on exoplanets with eccentricity and obliquity." Icarus 226: 2013. 760-776.							
(7)	H. Kaper and H. Engler. Mathematics and Climate, Society for Industrial and Applied Mathematics: 2013.								
(8)		. McGehee and C. Lehman. "A Paleoclimate model of Ice Albedo Feedback Forced by Variations in Earth's rbit." <i>SIAM J. Applied Dym. Sys.</i> , 11 (2): 2012.							
(9)		nd E. Widiasih. "A Quadratic A s." SIAM J. Applied Dym. Sys.,	uadratic Approximation to Budyko's Ice-Albedo Feedback Model with Ice Dym. Sys., 13 (1): 2014.						
(10)		. North. "Analytical Solution to a Simple Climate Model with Diffusive Heat Transport." <i>Journal of the tmospheric Sciences</i> , 32 (7): 1975. 1301-1307.							
(11)	G. North. "Th 2033-2043.	G. North. "Theory of Energy Balance Climate Models." <i>Journal of the Atmospheric Sciences</i> , 32 (11): 1975. 2033-2043.							
(12)	G. North. "Th 41 (23): 1984		fusive Climate Models." Journal	of the Atmospheric Sci	ences,				
(13)		ultiple Solutions in Energy Balan 7, 82 : 1990. 225-235.	ce Climate Models." Palaeogeogr	raphy, Palaeocliamtolog	ζγ,				
(14)		A Global Climatic Model Based o plied Meteorology, 8 : 1969. 392-	n the Energy Balance of the Eart 400.	h-Atmosphere System.'	,				
(15)		E. Widiasih. "A Dynamics Appro stems Series B, 19 (1): 2014. 253	oach to a Low-Order Climate Moo 7-279.	lel." Discrete and Con	tinuous				
(16)		C. Rackauckas. "On the Budyko Continuous Dynamical Systems S	-Sellers Energy Balance Climate M Series B, 20 (7): 2015. 1-29.	Nodel with Ice Line Co	upling."				
(17)	W. Ward. "Cl 79 (24): 1974.		nomical Theory of Insolation." Jo	ournal of Geophysical F	Reseach,				

(18) E. Widiasih. "Dynamics of the Budyko Energy Balance Model." *SIAM J. Applied Dym. Sys.*, **12** (4): 2013 (ロト イラト イラト イラト マラへで