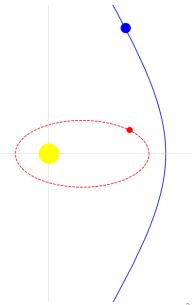
Effects of Eccentricity on Climate and Habitability Harini Chandramouli March 5, 2018

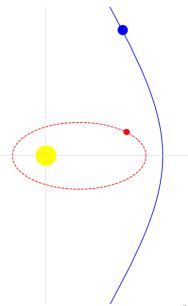
The Scattering Problem

Star passing "close" to our solar system



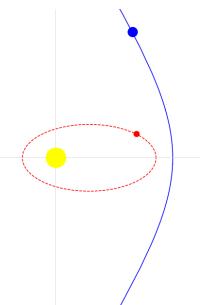
The Scattering Problem

- Star passing "close" to our solar system
- Hyperbolic Restricted 3-Body Problem

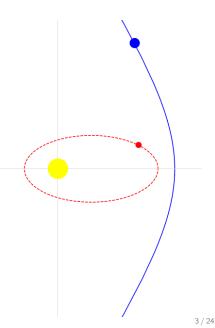


The Scattering Problem

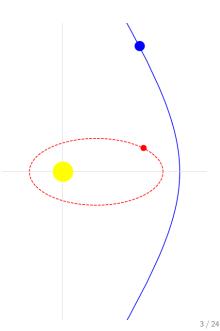
- Star passing "close" to our solar system
- Hyperbolic Restricted 3-Body Problem
- Changes in some orbital elements ⇒ changes in climate
 - Eccentricity
 - Obliquity
 - Precession



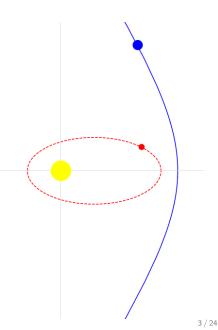
Move around in the plane – let Sun be at origin



- Move around in the plane let Sun be at origin
- Masses add to 1



- Move around in the plane let Sun be at origin
- Masses add to 1
 - 2D



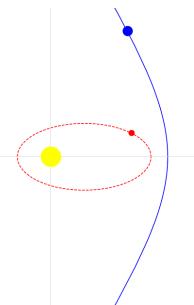
- Move around in the plane let Sun be at origin
- Masses add to 1

2D

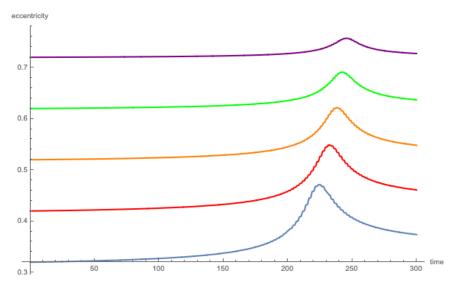
Formula for eccentricity vector

$$\mathbf{e}=\left(rac{q_1}{q}-rac{c}{\mu}p_2\,,\,rac{q_2}{q}+rac{c}{\mu}p_1
ight)$$

- (q_1, q_2) position • $q = \sqrt{q_1^2 + q_2^2}$ • c - angular momentum
- ▶ µ "mass"
- (p_1, p_2) momentum



Changes in Eccentricity in 2D Case



Change in eccentricity over time due to the passing star. Light Blue – $m_1 = m_2 = 0.5$, Red – $m_1 = 0.6$, $m_2 = 0.4$, Orange – $m_1 = 0.7$, $m_2 = 0.3$, Green – $m_1 = 0.8$, $m_2 = 0.2$, Purple – $m_1 = 0.9$, $m_2 = 0.1$.

Questions...

How do changes in the eccentricity affect changes in the climate?

Questions...

How do changes in the eccentricity affect changes in the climate? Insolation!

T(y,t) - surface temperature at time t at latitude arcsin(y)
 R - heat capacity of the surface of the planet
 Q - annual radiation from the Sun
 s(y) - latitudinal distribution of energy
 (1 - α) - fraction of radiative energy absorbed by the planet
 A, B, C - empirical parameters
 T(t) - annual average temperature

$$R\frac{\partial T}{\partial t} = \underbrace{Qs(y)(1-\alpha)}_{\text{incoming radiation}} - \underbrace{(A+BT(y,t))}_{\text{OLR}} - \underbrace{C\left(T(y,t)-\overline{T}(t)\right)}_{\text{heat transport}^*}$$

- **T**(y, t) surface temperature at time t at latitude arcsin(y)
- R heat capacity of the surface of the planet
- \blacksquare Q annual radiation from the Sun
- **s**(y) latitudinal distribution of energy
- $(1-\alpha)$ fraction of radiative energy absorbed by the planet
- *A*, *B*, *C* empirical parameters
- **T**(t) annual average temperature

$$R\frac{\partial T}{\partial t} = \underbrace{Qs(y)(1-\alpha)}_{\text{incoming radiation}} - \underbrace{(A+BT(y,t))}_{\text{OLR}} - \underbrace{C\left(T(y,t)-\overline{T}(t)\right)}_{\text{heat transport}^*}$$

- **T**(y, t) surface temperature at time t at latitude arcsin(y)
- R heat capacity of the surface of the planet
- \blacksquare Q annual radiation from the Sun
- **s**(y) latitudinal distribution of energy
- **(** 1α **)** fraction of radiative energy absorbed by the planet
- A, B, C empirical parameters
- **T**(t) annual average temperature

$$R\frac{\partial T}{\partial t} = \underbrace{Qs(y)(1-\alpha)}_{\text{incoming radiation}} - \underbrace{(A+BT(y,t))}_{\text{OLR}} - \underbrace{C\left(T(y,t)-\overline{T}(t)\right)}_{\text{heat transport}^*}$$

- **T**(y, t) surface temperature at time t at latitude arcsin(y)
- R heat capacity of the surface of the planet
- Q annual radiation from the Sun
- **s**(y) latitudinal distribution of energy
- (1α) fraction of radiative energy absorbed by the planet
- A, B, C empirical parameters
- $\overline{T}(t)$ annual average temperature

The Budyko-Widiasih Model

Add in the dynamic ice line equation:

$$\frac{d\eta}{dt} = \varepsilon \left(T_c - T(\eta) \right)$$

$$\eta - \text{ice line location}$$
$$T_c - \text{critical temperature}$$

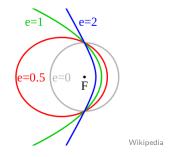
The Budyko-Widiasih Model

Add in the dynamic ice line equation:

$$\frac{d\eta}{dt} = \varepsilon \left(T_c - T(\eta) \right)$$

- $\blacksquare \ \eta \text{ice line location}$
- $\blacksquare T_c critical temperature$

Eccentricity



The main component of Earth's orbit affecting the global annual **in**coming **sol**ar radi**ation** (insolation), Qs(y), averaged over the entire surface of Earth over an entire year, is the eccentricity of the ellipse that defines the orbit of Earth.

Questions...

How do changes in the eccentricity affect changes in the climate? Insolation!

Insolation can take on many different patterns, what about other planets?

Questions...

How do changes in the eccentricity affect changes in the climate? Insolation!

Insolation can take on many different patterns, what about other planets? Exoplanets around M-Dwarf Stars

Exoplanets around M-dwarf Stars

 There exists a habitable zone around M-Dwarf stars (red dwarf)

phys.org

Exoplanets around M-dwarf Stars

phys.org

 There exists a habitable zone around M-Dwarf stars (red dwarf)

- Range in mass from about 0.075 to 0.50 solar mass
- Surface temperature < 4,000 K
- Most common type of star in the neighborhood of the Sun in the Milky Way

Exoplanets around M-dwarf Stars

phys.org

 There exists a habitable zone around M-Dwarf stars (red dwarf)

- Range in mass from about 0.075 to 0.50 solar mass
- Surface temperature < 4,000 K
- Most common type of star in the neighborhood of the Sun in the Milky Way
- This zone is so close to the star that gravitational tides are expected to lock a planet into spin-orbit resonance states.

Spin-Orbit Resonances

Spin-orbit resonance is defined as

 $p = \frac{\text{rotation period}}{\text{spin period}}$

Spin-Orbit Resonances

Spin-orbit resonance is defined as

 $p = \frac{\text{rotation period}}{\text{spin period}}$

Ex. Our Moon rotates once every 27 days, the same period as its orbit, so that it always keeps the same face toward Earth. (p = 1).

Spin-Orbit Resonances

Spin-orbit resonance is defined as

 $p = \frac{\text{rotation period}}{\text{spin period}}$

Ex. Our Moon rotates once every 27 days, the same period as its orbit, so that it always keeps the same face toward Earth. (p = 1).

Ex. Mercury rotates three times during every two orbits, so p = 3/2.

How does Eccentricity and Spin-Orbit Resonance Change Habitability?

The outer edge of the **habitable zone** is defined as the furthest distance at which liquid water on a planetary surface is not completely frozen.

How does Eccentricity and Spin-Orbit Resonance Change Habitability?

The outer edge of the **habitable zone** is defined as the furthest distance at which liquid water on a planetary surface is not completely frozen.

These exoplanets have larger orbital eccentricities than those in our solar system, which can lead to dramatic variations of stellar insolation

- $0 \le e \le 0.934$
- Median: ~ 0.110
- Mean: ~ 0.172

How does Eccentricity and Spin-Orbit Resonance Change Habitability?

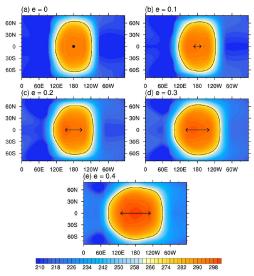
The outer edge of the **habitable zone** is defined as the furthest distance at which liquid water on a planetary surface is not completely frozen.

These exoplanets have larger orbital eccentricities than those in our solar system, which can lead to dramatic variations of stellar insolation

- $0 \le e \le 0.934$
- Median: ~ 0.110
- Mean: ~ 0.172

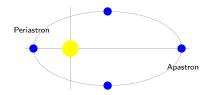
According to [6], when p = 1, we have the most stable climate and the widest habitable zone and eccentricity shrinks the width of the habitable zone.

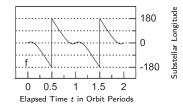
p = 1 Spin-Orbit Resonance State, [6]

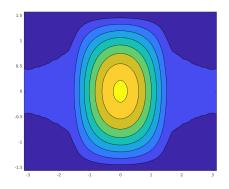


Long-term mean surface temperatures for different eccentricities. Units are K. The black arrow shows the migrations of the substellar points during an orbital cycle.

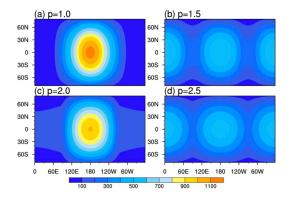
p = 2 Spin-Orbit Resonance, e = 0.4





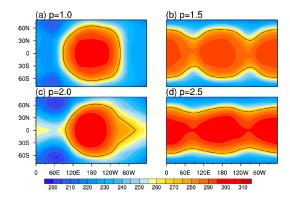


Insolation for Other Spin-Orbit Resonance States (e = 0.4), [6]



Incident stellar flux at the top of the atmosphere averaged over one orbital cycle for different spin-orbit resonance states. The contour interval is 100 Wm^{-2} .

Temperature for Other Spin-Orbit Resonance States (e = 0.4), [6]



Annual mean surface temperature averaged over one orbital cycle for different spin-orbit resonance states. Black curve shows the sea ice boundaries.

p = 1 is the Most Stable Climate, [6]

 "Striped ball" climate (half-integer resonances) is much warmer than eyeball climate (integer resonances)

p = 1 is the Most Stable Climate, [6]

- "Striped ball" climate (half-integer resonances) is much warmer than eyeball climate (integer resonances)
- For p = 1.0, 1.5, and 2.5, surface albedos are stable

p = 1 is the Most Stable Climate, [6]

- "Striped ball" climate (half-integer resonances) is much warmer than eyeball climate (integer resonances)
- For p = 1.0, 1.5, and 2.5, surface albedos are stable
- Fastest increase in surface temperature if planet is moved closer to parent star happens with p = 2.5

p = 1 is the Most Stable Climate, [6]

- "Striped ball" climate (half-integer resonances) is much warmer than eyeball climate (integer resonances)
- For p = 1.0, 1.5, and 2.5, surface albedos are stable
- Fastest increase in surface temperature if planet is moved closer to parent star happens with p = 2.5
- Harder to get p = 1.0, 2.0 to transition into snowball state, requires a greater decrease in insolation

Questions...

How do changes in the eccentricity affect changes in the climate? Insolation!

Insolation can take on many different patterns, what about other planets? Exoplanets around M-Dwarf Stars

Can we adapt the Budyko-Sellers Model to take into account the spin-orbit resonances and eccentricity differences on these exoplanets?

Questions...

How do changes in the eccentricity affect changes in the climate? Insolation!

Insolation can take on many different patterns, what about other planets? Exoplanets around M-Dwarf Stars

Can we adapt the Budyko-Sellers Model to take into account the spin-orbit resonances and eccentricity differences on these exoplanets? Well, that's what we're working on!

Nondimensionalizing the Budyko Model

Non-dimensional constants:

$$\delta = \frac{A + BT_c}{Q}$$
$$\gamma = \frac{C}{B}$$

This yields the nondimensional Budyko equation

$$\frac{\partial \varphi}{\partial \tilde{t}} = s(\tilde{y}) \left(1 - \alpha(\tilde{y}, \tilde{t})\right) - \delta - \varphi(\tilde{y}, \tilde{t}) - \gamma \left(\varphi(\tilde{y}, \tilde{t}) - \overline{\varphi}(\tilde{t})\right)$$

Budyko Model with Eccentricity as a Parameter

$$Q
ightarrow Q(e) = rac{Q_0}{\sqrt{1-e^2}}$$

Budyko Model with Eccentricity as a Parameter

$$Q \rightarrow Q(e) = \frac{Q_0}{\sqrt{1 - e^2}}$$
$$s(y) \rightarrow s(y, e) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 + e \cos(\nu)}{(1 - e^2)^2} \underbrace{f(\nu, p, \beta, e, \text{lat}, \text{lon})}_{\text{sines and cosines}} d\nu$$

Here...

$$\blacksquare \ \nu = \mathsf{true} \text{ anomaly}$$

 $\blacksquare \ \beta = \mathsf{obliquity}$

Budyko Model with Eccentricity as a Parameter

$$Q \rightarrow Q(e) = \frac{Q_0}{\sqrt{1 - e^2}}$$
$$s(y) \rightarrow s(y, e) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 + e \cos(\nu)}{(1 - e^2)^2} \underbrace{f(\nu, p, \beta, e, \mathsf{lat}, \mathsf{lon})}_{\mathsf{sines and cosines}} d\nu$$

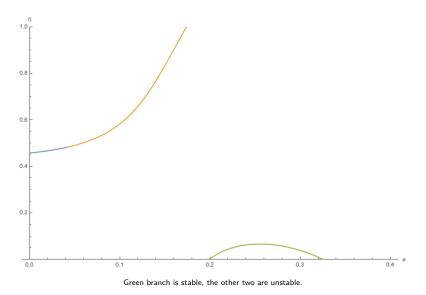
 \sim

Here...

$$D = true anomaly$$
$$B = obliquity$$

How does this change affect the model?

Bifurcation Diagram for e



Note: to make this diagram, we used a simplification of the insolation function

Look at more bifurcation diagrams for *e*

- Look at more bifurcation diagrams for *e*
- Look at other spin-orbit resonances (relate it to [6])

- Look at more bifurcation diagrams for e
- Look at other spin-orbit resonances (relate it to [6])
- Recreate pictures from [6] using the Budyko Model

- Look at more bifurcation diagrams for e
- Look at other spin-orbit resonances (relate it to [6])
- Recreate pictures from [6] using the Budyko Model
- Consider a dynamic albedo equation

Thank You!

Credits

 J. Checlair, K. Menou, and D. Abbot. No Snowball on Habitable Tidally Locked Planets, The Astrophys. J., 845 (2017), pp. 132 - 142.
 A.R. Dobrovolskis. Insolation Patterns on Eccentric Exoplanets, Icarus, 250 (2015), pp. 395 - 399.

[3] R. McGehee and C. Lehman. *A paleoclimate model of ice-albedo feedback forced by variations in Earth's orbit*, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 684 - 707.

[4] A. Nadeau, personal communication.

[5] B.E.J. Rose, T. W. Cronin, C. M. Bitz. *Ice Caps and Ice Belts: The Effects of Obliquity on Ice-Albedo Feedback*, The Astrophys. J., 846 (2017), pp. 28 - 45.

[6] Y. Wang, Y. Liu, F. Tian, Y. Hu, Y. Huang. *Effects of eccentricity on climates and habitability of terrestrial exoplanets and M dwarfs*, arXiv:1710.01405 [astro-ph.EP].

[7] E. Widiasih. *Dynamics of Budyko's energy balance model*, SIAM Appl. Dyn. System., 12 (2013), pp. 2068 - 2092.