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Motivation

The Scattering Problem

� Star passing “close” to our solar
system

� Hyperbolic Restricted 3-Body
Problem

� Changes in some orbital
elements =⇒ changes in
climate
I Eccentricity
I Obliquity
I Precession
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Motivation

Logistics of the HR3BP

� Move around in the plane – let
Sun be at origin

� Masses add to 1
� 2D
� Formula for eccentricity vector

e =
(q1

q −
c
µ

p2 ,
q2
q + c

µ
p1

)

I (q1, q2) – position
I q =

√
q2

1 + q2
2

I c – angular momentum
I µ – “mass”
I (p1, p2) – momentum
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Motivation

Changes in Eccentricity in 2D Case

Change in eccentricity over time due to the passing star. Light Blue – m1 = m2 = 0.5, Red – m1 = 0.6, m2 = 0.4, Orange –
m1 = 0.7, m2 = 0.3, Green – m1 = 0.8, m2 = 0.2, Purple – m1 = 0.9, m2 = 0.1.
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Motivation

Questions...

� How do changes in the eccentricity affect changes in the climate?

Insolation!
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The Budyko-Sellers Energy Balance Model

The Budyko Energy Balance Model

R ∂T
∂t = Q s(y) (1− α)︸ ︷︷ ︸

incoming radiation

− (A + B T (y , t))︸ ︷︷ ︸
OLR

− C
(

T (y , t)− T (t)
)

︸ ︷︷ ︸
heat transport*

� T (y , t) – surface temperature at time t at latitude arcsin(y)
� R – heat capacity of the surface of the planet
� Q – annual radiation from the Sun
� s(y) – latitudinal distribution of energy
� (1− α) – fraction of radiative energy absorbed by the planet
� A,B,C – empirical parameters
� T (t) – annual average temperature
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The Budyko-Sellers Energy Balance Model

The Budyko-Widiasih Model

Add in the dynamic ice line equation:

dη
dt = ε (Tc − T (η))

� η — ice line location
� Tc – critical temperature
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The Budyko-Sellers Energy Balance Model

Eccentricity

Wikipedia

The main component of Earth’s orbit affecting the global annual incoming
solar radiation (insolation), Qs(y) , averaged over the entire surface of
Earth over an entire year, is the eccentricity of the ellipse that defines the
orbit of Earth.
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The Budyko-Sellers Energy Balance Model

Questions...

� How do changes in the eccentricity affect changes in the climate?
Insolation!

� Insolation can take on many different patterns, what about other
planets?

Exoplanets around M-Dwarf Stars
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The Budyko-Sellers Energy Balance Model

Exoplanets around M-dwarf Stars

phys.org

� There exists a habitable zone
around M-Dwarf stars (red
dwarf)

I Range in mass from about
0.075 to 0.50 solar mass

I Surface temperature < 4, 000
K

I Most common type of star in
the neighborhood of the Sun
in the Milky Way

� This zone is so close to the star
that gravitational tides are
expected to lock a planet into
spin-orbit resonance states.
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The Budyko-Sellers Energy Balance Model

Spin-Orbit Resonances

Spin-orbit resonance is defined as

p = rotation period
spin period

Ex. Our Moon rotates once every 27 days, the same period as its orbit, so
that it always keeps the same face toward Earth. (p = 1).

Ex. Mercury rotates three times during every two orbits, so p = 3/2.
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The Budyko-Sellers Energy Balance Model

How does Eccentricity and Spin-Orbit Resonance Change
Habitability?

The outer edge of the habitable zone is defined as the furthest distance
at which liquid water on a planetary surface is not completely frozen.

These exoplanets have larger orbital eccentricities than those in our solar
system, which can lead to dramatic variations of stellar insolation
� 0 ≤ e ≤ 0.934
� Median: ∼ 0.110
� Mean: ∼ 0.172

According to [6], when p = 1, we have the most stable climate and the
widest habitable zone and eccentricity shrinks the width of the habitable
zone.
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The Budyko-Sellers Energy Balance Model

p = 1 Spin-Orbit Resonance State, [6]

Long-term mean surface temperatures for different eccentricities. Units are K. The black arrow shows the migrations of the
substellar points during an orbital cycle.
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The Budyko-Sellers Energy Balance Model

p = 2 Spin-Orbit Resonance, e = 0.4
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Elapsed Time t in Orbit Periods

Su
bs

te
lla

r
Lo

ng
itu

de

14 / 24



The Budyko-Sellers Energy Balance Model

Insolation for Other Spin-Orbit Resonance States
(e = 0.4), [6]

Incident stellar flux at the top of the atmosphere averaged over one orbital cycle for different spin-orbit resonance states. The
contour interval is 100 Wm−2.
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The Budyko-Sellers Energy Balance Model

Temperature for Other Spin-Orbit Resonance States
(e = 0.4), [6]

Annual mean surface temperature averaged over one orbital cycle for different spin-orbit resonance states. Black curve shows
the sea ice boundaries.
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The Budyko-Sellers Energy Balance Model

p = 1 is the Most Stable Climate, [6]

� “Striped ball” climate (half-integer resonances) is much warmer than
eyeball climate (integer resonances)

� For p = 1.0, 1.5, and 2.5, surface albedos are stable
� Fastest increase in surface temperature if planet is moved closer to

parent star happens with p = 2.5
� Harder to get p = 1.0, 2.0 to transition into snowball state, requires a

greater decrease in insolation
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The Budyko-Sellers Energy Balance Model

Questions...

� How do changes in the eccentricity affect changes in the climate?
Insolation!

� Insolation can take on many different patterns, what about other
planets?
Exoplanets around M-Dwarf Stars

� Can we adapt the Budyko-Sellers Model to take into account the
spin-orbit resonances and eccentricity differences on these exoplanets?

Well, that’s what we’re working on!
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The Budyko-Sellers Energy Balance Model

Nondimensionalizing the Budyko Model

Non-dimensional constants:

δ = A + BTc
Q

γ = C
B

This yields the nondimensional Budyko equation

∂ϕ

∂ t̃ = s(ỹ) (1− α(ỹ , t̃))− δ − ϕ(ỹ , t̃)− γ (ϕ(ỹ , t̃)− ϕ(t̃))
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The Budyko-Sellers Energy Balance Model

Budyko Model with Eccentricity as a Parameter

Q → Q(e) = Q0√
1− e2

s(y)→ s(y , e) = 1
2π

∫ 2π

0

1 + e cos(ν)
(1− e2)2 f (ν, p, β, e, lat, lon)︸ ︷︷ ︸

sines and cosines

dν

Here...
� ν = true anomaly
� β = obliquity

How does this change affect the model?
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The Budyko-Sellers Energy Balance Model

Bifurcation Diagram for e

Green branch is stable, the other two are unstable.

Note: to make this diagram, we used a simplification of the insolation function
21 / 24



The Budyko-Sellers Energy Balance Model

Future Directions

� Look at more bifurcation diagrams for e
� Look at other spin-orbit resonances (relate it to [6])
� Recreate pictures from [6] using the Budyko Model
� Consider a dynamic albedo equation
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The Budyko-Sellers Energy Balance Model

TITLE

Thank You!

23 / 24



The Budyko-Sellers Energy Balance Model
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