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Atlantic Meridional Overturning Circulation

The Atlantic Meridional Overturning Circulation is a component of
ocean currents that moves heat and water around the Earth. Its
behavior has a strong influence on our climate.
Image: [21]
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Welander’s Model: Atlantic Overturning Circulation

There is strong evidence that AMOC has changed convective
strength in the past.
Welander’s goal: Prove these changes could be internally driven,
instead of relying on outside forcing [20].
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Welander’s Model

Figure: Deep Ocean and Shallow
Ocean [20]

Ocean circulation box model:
Planar system, salt (S) and
temperature (T) are dynamic
variables.

Welander’s goal: Show internally
driven ocean convection strength
oscillations, instead of relying on
outside forcing.
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Welander’s Model

Figure: Deep Ocean and Shallow
Ocean [20]

Ṫ = kT (TA − T )− k(ρ)T

Ṡ = kS(SA − S)− k(ρ)S

ρ = −αT + γS

Smooth Version:

k(ρ) =
1

π
tan−1(

ρ− ε
a

) +
1

2

Nonsmooth Version:

k(ρ) =

{
k1 ρ > ε

0, ρ < ε

Σ: Line ρ = ε
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Welander’s Model: Smooth Version

Figure: Deep Ocean and Shallow
Ocean [20]

When a smooth k is used, the
system can be analyzed using
traditional methods.

Welander uses
Poincare-Bendixson to find a
periodic orbit and get a
proof-of-concept for his
convective oscillation idea.
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Welander’s Model: Non-Smooth Version

When a non-smooth k is used,
the system cannot be analyzed
using traditional methods.

It is clear that this model was
Welander’s original motivation,
however.
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Figure: Non-Smooth Version of
Welander’s model. The red dots are
equilibria on opposite sides of the
switching boundary. [10]
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Different Dynamics for Different Regions: Filippov Systems

Welander’s non-smooth model is an example of a Filippov System.

Σ

G1

G2

f1

f2

Figure: A planar Filippov system with R2 split into two regions.

ẋ ∈ F (x) =


f1(x), x ∈ G1

f2(x), x ∈ G2

{αf2(x) + (1− α)f1(x) : α ∈ [0, 1]} x ∈ Σ
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Filippov Systems and Climate

Many other climate models are also Filippov Systems:

Earth’s surface albedo [4][6]

Ecological Decision Making [17]

Socio-Economic Decision Making [19]

Layers in the Atmosphere? (Yorkinoy Shermatova)
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Periodic Orbit in the Non-Smooth Welander Model
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Figure: Periodic orbit in the non-smooth model.

Julie Leifeld used methods from Filippov’s book to prove that the
periodic orbit exists in the non-smooth model. [10]
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Periodic Orbit in the Non-Smooth Welander Model
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Figure: Periodic orbit in the non-smooth model.

Problems:

The methods Dr. Leifeld used are very ad-hoc (cannot be
easily applied to other models).

There are few known techniques for analysis in very high
dimensions.
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Conley Index Theory for Filippov Systems?

Conley Index Theory is a
powerful, (relatively) easy to
use tool that gives robust
topological information
about a system.

It works in arbitrarily high
dimensions.

It seems to work for Filippov
systems.

Figure: Charles Cameron Conley
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Conley Theory works with Welander

Figure: In the Welander Model, we
can choose N to be homeomorphic
to an annulus, and it has an empty
exit set L, so the Conley Index is of
a circle and a disjoint point.

A compact isolating
neighborhood N (no
invariant points on
boundary).

The exit set L ⊂ ∂N
The Conley Index is the
homology sequence
associated to the pair
(N/L, [L]).
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Can Conley Theory be Extended to Filippov Systems?

For all of our well-understood dynamics, Conley Theory seems
to work, but we cannot prove (yet) that it works in general.

Key Issue: Conley Theory requires a flow, but Filippov
systems do not give rise to flows.

Richard McGehee’s Solution: the multiflow.
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Flows and Differential Equations

A flow is a continuous map ϕ : R× X → X satisfying the group
properties

ϕ(0, x) = x

ϕ(s, ϕ(t, x)) = ϕ(s + t, x)

The flow relates to the differential equation

ẋ = f (x)

by letting ϕ(t, x0) correspond to the solution x(t) with the initial
condition x(0) = x0.
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Why Can’t Filippov Systems give Flows?

Filippov systems have:

Intersecting trajectories

Non-unique solutions

This prevents Filippov systems from being flows:

No group action

Cannot be a map

This is where multiflows come in, but let’s look at the behvaior of
Filippov systems first a bit.
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Behavior Near Splitting Boundary
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Figure: Crossing Region
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Figure: Attracting Region
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Figure: Repelling Region
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Intersecting Trajectories
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Figure: Intersecting Trajectories in a simple Filippov System

Cannot obey group properties:

φt(φ−t(x)) = φt−t(x) 6= φ0(x) = x



Welander’s Ocean Box Model Filippov Systems Filippov and Flows Multiflows Nearby Smooth Systems

Intersecting Trajectories
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Figure: Intersecting Trajectories in a Filippov System

Solution: Monoid Action (Semiflow)
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Multiple Solutions
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Figure: Four different solutions of a Filippov system

˙(x , y) ∈ H(x , y) :=


{(1, x)}, y > 0

{(1, β) : β ∈ [−x , x ]} y = 0

{(1,−x)}, y < 0
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Multiflows

A multiflow is an object that is intended to generalize the concept
of flows to Filippov systems.

Before we define multiflows, we need some background.
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Relations

A relation on a topological space X is a subset of X × X .

If F and G are both relations on X , then we can define the
composition:

F ◦ G = {(x , z) ∈ X × X : ∃y ∈ X s.t. (x , y) ∈ G , (y , z) ∈ F}
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The Closed Graph Theorem

Let X be a topological space and let Y be a Hausdorff space.

f : X → Y is continuous

↓

The graph of f is closed
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The Closed Graph Theorem

Let X be a topological space and let Y be a compact Hausdorff
space.

f : X → Y is continuous

l

The graph of f is closed
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Graph of a Flow

The graph of a flow φ on a compact set X is a closed subset of
R× X × X such that for each t ∈ R, φt contains exactly one pair
(x , y) ∈ X × X for each x ∈ X and the group properties hold:

φ0 = {(x , x) : x ∈ X}
φt+s = φt ◦ φs

Where φt := {(x , y) ∈ X × X : (t, x , y) ∈ φ}
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Can we modify flows to fit Filippov Systems?

The graph of a flow φ on a compact set X is a closed subset of
R+ ×X ×X such that for each t ∈ R, φt contains exactly one pair
(x , y) ∈ X × X for each x ∈ X and the group monoid properties
hold:

φ0 = {(x , x) : x ∈ X}
φt+s = φt ◦ φs

Where φt := {(x , y) ∈ X × X : (t, x , y) ∈ φ}
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Multiflows

A multiflow Φ on a compact space X is a closed subset of
R+ × X × X satisfying the monoid properties:

Φ0 = {(x , x) : x ∈ X}
Φt+s = φt ◦ φs

Where Φt := {(x , y) ∈ X × X : (t, x , y) ∈ Φ}
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Filippov Systems give rise to Multiflows

Theorem: Let ẋ ∈ F (x) be a
Filippov system on an open
domain G ⊂ Rn, and let K ⊂ G
be compact. Let Φ be the set of
all points

{(T , a, b) ∈ R+ × K × K}

such that there exists a solution
x : [0,T ]→ K satisfying
x(0) = a and x(T ) = b.

Then the set Φ is a multiflow
over K .

Figure: Once solutions leave K , they
are no longer included in Φ.
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Nearby Smooth Systems and Conley Theory

Conley Theory for multiflows: still in progress.

Since Conley Theory is robust under perturbation, if we can extend
it we can get information about nearby smooth systems.
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Smooth Systems that Limit to Filippov Systems

Researchers are often interested
in how well a non-smooth system
approximates a limiting smooth
system, much like in the
Welander model:
Smooth Version:

k(ρ) =
1

π
tan−1(

ρ− ε
a

) +
1

2

Nonsmooth Version:

k(ρ) =

{
k1 ρ > ε

0, ρ < ε
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Figure: As α→∞, tanhαx limits to
a piecewise function.
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Differential Inclusions

Filippov Systems are actually
differential inclusions

ẋ ∈ F (x)

where F is a set-valued map.

A solution is an absolutely
continuous function satisfying

d

dt
x(t) ∈ F (x(t))

almost everywhere on some
interval I ∈ R.
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F (x) =


−1, x < 0

[−1, 1], x = 0

1, x > 0
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Jeffrey’s Objection

Mike Jeffrey showed that infinitely many smooth systems can limit
to the same piecewise system, but their behavior near the
switching boundary can be different. [7]
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Figure: The function tanh(αx) + 2
and the same function modified by a
smooth mollifier.
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Figure: Convex combination to
produce F (x) from discontinuous f
above.
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Use Hausdorff Metric to Define ”Nearby”

The convex combination method is popular, but Filippov worked in
more generality. Using the Hausdorff metric we can define
”nearby” more appropriately for this setting.
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