Convergence and Equilibrium for Stochastic Models of Ecological Disturbances

1 - - - IA

James Broda jbroda@bowdoin.edu

Nicollet Island-Northeast Fire, 1893

California wildfires, 2019

A firefighting helicopter flies over the Getty Fire as it burns in the hills west of the 405 freeway.

・ロト ・四ト ・ヨト・ヨト

Gene Blevins/Reuters

California wildfires, 2019

イロト イヨト イヨト イヨト

How can one model the carbon content of an ecosystem with randomly occurring disturbances of random severity?

EN 4 EN

 Discrete time and state introduction

 Continuous time and state Semistochastic model

EN 4 EN

Questions to keep in mind

 What information can we extract from equilibrium distributions?

Why do convergence rates matter?

• • = • • = •

X : State space

• μ_0 : Initial distribution

Q : Transition matrix

伺い イヨト イヨト

Two-state Markov chain

$\mathbf{\mathcal{X}} : \{ \mathsf{Fire, No Fire} \}$

• μ_0 : Is there a fire now?

Q : Environment, beliefs

< 回 > < 三 > < 三 >

Notebook example

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

Probability vectors

$$\mu_n = \begin{pmatrix}
\mathsf{Prob. of fire on } n^{th} \mathsf{day} \\
\mathsf{Prob. of no fire on } n^{th} \mathsf{day}
\end{pmatrix}^7$$

• Initial probability vector: μ_0

$$\mu_n = \mu_0 \begin{pmatrix} \frac{9}{10} & \frac{1}{10} \\ \frac{1}{50} & \frac{49}{50} \end{pmatrix}^n = \mu_0 Q^n$$

< 回 > < 回 > < 回 > -

Limiting:

$$\lim_{n\to\infty}\mu_n=\pi\quad\text{for any }\mu_0$$

Invariant:

$$\mu_0 = \pi \Rightarrow \mu_n = \pi$$
 for all $n > 0$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

Note: These two characterizations are not always equivalent!

An invariant approach

$$\pi = \pi Q$$

= $\pi \begin{pmatrix} \frac{9}{10} & \frac{1}{10} \\ \frac{1}{50} & \frac{49}{50} \end{pmatrix}$

 π is a *left*-eigenvector of the transition matrix, Q, with eigenvalue 1.

$$\pi = \begin{pmatrix} \frac{1}{6}, & \frac{5}{6} \end{pmatrix}$$

< 回 > < 三 > < 三 >

Question:

What information can we extract from this equilibrium distribution?

Answer:

In the long run, there will be fires on 1 out of 6 days.

A (1) > A (2) > A (2) > A

Realization of Markov chain

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The eigenvalues of *Q* satisfy $\lambda_1 = 1$ and $|\lambda_2| = 1 - \beta$ with $\beta = |1 - \frac{1}{10} - \frac{1}{50}| = \frac{6}{50}$.

$$\boldsymbol{Q} = \begin{pmatrix} \frac{\textbf{J}}{10} & \frac{\textbf{I}}{10} \\ \frac{1}{50} & \frac{49}{50} \end{pmatrix}$$

The other eigenvalue is related to the rate at which an arbitrary initial distribution, μ_0 , converges to π . One can show

$$\mathrm{d}_{TV}(\mu_n,\pi) \leq (1-\beta)^n$$
.

Given probability distributions, μ and ν :

$$d_{TV}(\mu,\nu) = \sup_{\mathcal{A}} |\mu(\mathcal{A}) - \nu(\mathcal{A})|$$

$$\mathrm{d}_{\mathcal{TV}}(\mu,
u) = \sup_{0\leq f\leq 1} |\mathbb{E}_{\mu}(f) - \mathbb{E}_{
u}(f)|$$

A D > A B > A B > A B >

Total variation distance

Χ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Total variation distance

Χ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Total variation distance

Χ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Question:

Why do convergence rates matter?

Answer:

The "long run" may be a long time coming.

Markov chains are "memoryless", but need time to forget.

くぼう くほう くほう

Evolution of probabilities

Convergence and Equilibrium for Stochastic Models of Ecological Disturbances

Evolution of probabilities

SLOW:

Convergence and Equilibrium for Stochastic Models of Ecological Disturbances

イロト イヨト イヨト イヨト

SLOW:

Convergence and Equilibrium for Stochastic Models of Ecological Disturbances

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

How can one model the carbon content of an ecosystem and account for randomly occurring disturbances of random severity?

B + 4 B +

Model design:

- Carbon content increases deterministically between disturbances.
- Fires occur at random times and release carbon.
- Severity of fires is random.

Semistochastic model

イロト イヨト イヨト イヨト

э

Components of semistochastic model

Growth Rate – Deterministic evolution $\frac{\mathrm{d}x}{\mathrm{d}t} = g(x), \qquad x(t) = \phi^t(x_0)$

Disturbance Rate – Probability per unit time

 $\Lambda(x)$

Disturbance Kernel – Severity of disturbances

P(x, A)

Components of semistochastic model

Growth Rate – Deterministic evolution $\frac{\mathrm{d}x}{\mathrm{d}t} = g(x), \qquad x(t) = \phi^t(x_0)$

Disturbance Rate – Probability per unit time

 $\Lambda(x)$

Disturbance Kernel – Severity of disturbances

P(x, A)

This state dependence is important!!

Disturbance kernel

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Stochastic flow-kick model

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

э

Distribution of X_t

Χ

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Initial Distribution:

 $\mu_{\mathbf{0}}$

• Evolved Distributions:

$$\mu_0 \rightarrow \mu_t =: \mu_0 \mathcal{U}^t$$

< 回 > < 回 > < 回 > -

◆□ → ◆□ → ▲目 → ▲目 → ▲□ →

For absolutely continuous distributions and disturbance kernel,

$$\frac{\mathrm{d}\mu_t}{\mathrm{d}x} =
ho(x,t), \quad P(x,\mathrm{d}y) = p(x,y)\mathrm{d}y$$

$$\partial_t \rho(x,t) = -\partial_x \left(g(x) \rho(x,t) \right) - \Lambda(x) \rho(x,t) + \int p(y,x) \Lambda(y) \rho(y,t) \, \mathrm{d}y \, .$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

For absolutely continuous distributions and disturbance kernel,

$$\frac{\mathrm{d}\mu_t}{\mathrm{d}x} =
ho(x,t), \quad P(x,\mathrm{d}y) = p(x,y)\mathrm{d}y$$

$$\partial_t \rho(\mathbf{x},t) = -\partial_x \left(g(\mathbf{x}) \rho(\mathbf{x},t) \right) - \Lambda(\mathbf{x}) \rho(\mathbf{x},t) + \int p(\mathbf{y},\mathbf{x}) \Lambda(\mathbf{y}) \rho(\mathbf{y},t) \, \mathrm{d}\mathbf{y} \, .$$

• (1) • (

Deterministic evolution

For absolutely continuous distributions and jump kernel,

$$\frac{\mathrm{d}\mu_t}{\mathrm{d}x} =
ho(x,t), \quad P(x,\mathrm{d}y) = p(x,y)\mathrm{d}y$$

$$\partial_t \rho(x,t) = -\partial_x \left(g(x)\rho(x,t)\right) - \Lambda(x)\rho(x,t) + \int p(y,x)\Lambda(y)\rho(y,t)\,\mathrm{d}y\,.$$

Disturbance occurrence

く 同 ト く ヨ ト く ヨ ト

For absolutely continuous distributions and jump kernel,

$$\frac{\mathrm{d}\mu_t}{\mathrm{d}x} = \rho(x,t), \quad \mathcal{P}(x,\mathrm{d}y) = \rho(x,y)\mathrm{d}y$$

$$\partial_t \rho(\mathbf{x},t) = -\partial_x \left(g(\mathbf{x}) \rho(\mathbf{x},t) \right) - \Lambda(\mathbf{x}) \rho(\mathbf{x},t) + \int \rho(\mathbf{y},\mathbf{x}) \Lambda(\mathbf{y}) \rho(\mathbf{y},t) \, \mathrm{d}\mathbf{y}$$

Disturbance severity

A (10) A (10)

• Does there exist a distribution π on $\mathcal X$ with

$$\mathrm{d}_{\mathcal{T}\mathcal{V}}(\mu_t,\pi)
ightarrow 0$$
 as $t
ightarrow \infty$?

- (日本) (日本) (日本) (日本)

• Given $\delta >$ 0, how large must t be so that ${
m d}_{TV}(\mu_t,\pi) < \delta$?

Χ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

э

Χ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

э

Χ

ヘロト ヘアト ヘビト ヘビト

э

Х

ヘロト ヘアト ヘビト ヘビト

э

Question:

What information can we extract from this equilibrium distribution?

Answer:

We can compute the fraction of time (in the long run) that the process X_t spends in any measurable subset of our state space.

く 戸 と く ヨ と く ヨ と

Theorem (B.)

Under appropriate assumptions, X_t is uniformly ergodic with a unique stationary distribution, π , and

$$\mathrm{d}_{TV}(\mu_t,\pi) \leq (1-\beta)^t$$

< 回 > < 回 > < 回 > -

for any initial distribution μ_0 .

Note: The value of β is explicitly constructed.

- Discretize the process (in time).
- Overlop minorization for the discretization.

過き イヨト イヨト

Deduce bounds for the original continuous-time process.

Discrete time transition kernel

イロン イ理 とく ヨン イヨン

Ingredients:

Probability measure η on X β > 0

With

$$\mathcal{U}^{\Delta t}(\boldsymbol{x}, \boldsymbol{A}) \geq \beta \eta(\boldsymbol{A})$$

3

for any measurable set *A* and all $x \in \mathcal{X}$.

Let $f : \mathcal{X} \mapsto \mathbb{R}$ be an observable, then

$$egin{aligned} \langle \mu_{\Delta t}, f
angle &= \langle \mu_0 \mathcal{U}^{\Delta t}, f
angle \ &= \langle \mu_0, \mathcal{U}^{\Delta t} f
angle \end{aligned}$$

with

$$[\mathcal{U}^{\Delta t}f](x) \coloneqq \mathbb{E}[f(X_{\Delta t}) \mid X_0 = x]$$

and

$$\langle \mu_0, \mathcal{U}^{\Delta t} f \rangle = \int [\mathcal{U}^{\Delta t} f](\mathbf{x}) \mathrm{d} \mu_0(\mathbf{x})$$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

The minorization condition

$$\mathcal{U}^{\Delta t}(\boldsymbol{x}, \boldsymbol{A}) \geq \beta \eta(\boldsymbol{A})$$

is equivalent to requiring for any nonnegative observable f, and for all $x \in A$,

$$[\mathcal{U}^{\Delta t}f](x) \geq eta \int f(y) \mathrm{d}\eta(y) \;.$$

- A TE N - A TE N

To control the discrete-time evolution operator, $\mathcal{U}^{\Delta t}$, we can study the infinitesimal generator \mathcal{L} of \mathcal{U}^{t} .

 \mathcal{L} acts on observables, f, according to

$$[\mathcal{L}f](x) = \lim_{t \searrow 0} \frac{\mathcal{U}^t f(x) - f(x)}{t}$$

In our case,

$$[\mathcal{L}f](x) = f'(x)g(x) + \Lambda(x)\int P(x,\mathrm{d}y)[f(y) - f(x)] \;.$$

< 回 > < 三 > < 三 > 、

Convergence and Equilibrium for Stochastic Models of Ecological Disturbances

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Uniform minorization for compact one-dimensional state spaces

with ψ defined by

$$x_1 = \phi^t(x_0) \quad \Longleftrightarrow \quad t = \psi(x_0, x_1)$$

and

$$\lambda \geq \Lambda(x)$$
 for all $x \in \mathcal{X}$

э

Optimal Δt

Plots of $(1 - \beta_{\Delta t})^{\lfloor t/\Delta t \rfloor}$ vs. *t* for various Δt

э

Question:

Why do convergence rates matter?

Answers:

- Determine how long before "long-run" averages are realized.
- Provide guidance for numerical methods of approximating stationary distributions.

く 伺 とうく ヨ とう うちょう

• Relevant for sub-sampling techniques used with Monte Carlo methods in likelihood-based inference.

Applications of semistochastic / piecewise-deterministic models

- Ecological disturbances
- Precipitation models
- Growth-fragmentation processes

A TEAL A TEAL

- Human behaviour
- Viral reproduction

Select references

- J. Broda, A. Grigo, and N.P. Petrov. Convergence rates for semistochastic processes. *Discrete and Continuous Dynamical Systems - B*, **24(1)** (2019), 109-125.
- Benaim, Michel, et al. Qualitative properties of certain piecewise deterministic Markov processes. Annales de l'IHP Probabilites et statistiques.51(3) (2015), 1040-1075.
- M. C. A. Leite, N. P. Petrov and E. Weng, Stationary distributions of semistochastic processes with disturbances at random times and with random severity, *Nonlinear Analysis: Real World Applications*, **13** (2012), 497–512.
- B. Beckage, W. J. Platt and L. J. Gross, Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas, *The American Naturalist*, **174** (2009), 805–818.
- B. J. Cairns, Evaluating the expected time to population extinction with semi-stochastic models, *Mathematical Population Studies*, **16** (2009), 199–220.