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An ecological problem

How can one model the carbon
content of an ecosystem with

randomly occurring disturbances
of random severity?
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Today’s plan

1 Discrete time and state
introduction

2 Continuous time and state
Semistochastic model
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Questions to keep in mind

1 What information can we
extract from equilibrium
distributions?

2 Why do convergence rates
matter?
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Markov chains

1 X : State space

2 µ0 : Initial distribution

3 Q : Transition matrix
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Two-state Markov chain

1 X : {Fire, No Fire}
2 µ0 : Is there a fire now?

3 Q : Environment, beliefs
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Notebook example
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Evolved distributions

Probability vectors

µn =

(
Prob. of fire on nth day

Prob. of no fire on nth day

)T

Initial probability vector: µ0

µn = µ0
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Equilibrium distributions

Limiting:

lim
n→∞

µn = π for any µ0

Invariant:

µ0 = π ⇒ µn = π for all n > 0

Note: These two characterizations are not always equivalent!
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An invariant approach

π = πQ

= π
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π is a left-eigenvector of the transition matrix, Q,
with eigenvalue 1.

π =
(1

6 ,
5
6

)
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Equilibrium distributions

Question:
What information can we extract from this
equilibrium distribution?

Answer:
In the long run, there will be fires on 1 out of
6 days.
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Realization of Markov chain
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What about the other eigenvalue?

The eigenvalues of Q satisfy λ1 = 1 and |λ2| = 1− β with
β = |1− 1
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The other eigenvalue is related to the rate at which an
arbitrary initial distribution, µ0, converges to π. One can
show

dTV (µn, π) ≤ (1− β)n .
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Total variation distance

Given probability distributions, µ and ν:

dTV (µ, ν) = sup
A
|µ(A)− ν(A)|

dTV (µ, ν) = sup
0≤f≤1

|Eµ(f )− Eν(f )|
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Total variation distance

X

t

1
2dTV( , t)

JAMES BRODAConvergence and Equilibrium for Stochastic Models of Ecological Disturbances



Total variation distance
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dTV( , t)
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Total variation distance
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Convergence rates

Question:
Why do convergence rates matter?

Answer:
The “long run” may be a long time coming.

Markov chains are “memoryless”, but need
time to forget.
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Evolution of probabilities
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Evolution of probabilities
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FAST:
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FAST:
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FAST:
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Rewind

How can one model the carbon
content of an ecosystem and

account for randomly occurring
disturbances of random severity?
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Semistochastic model for the carbon content of an
ecosystem

Model design:

Carbon content increases deterministically
between disturbances.

Fires occur at random times and release
carbon.

Severity of fires is random.
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Semistochastic model
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Components of semistochastic model

Growth Rate – Deterministic evolution
dx
dt

= g(x) , x(t) = φt(x0)

Disturbance Rate – Probability per unit time

Λ(x)

Disturbance Kernel – Severity of disturbances

P(x ,A)
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Components of semistochastic model

Growth Rate – Deterministic evolution
dx
dt

= g(x) , x(t) = φt(x0)

Disturbance Rate – Probability per unit time

Λ(x)

Disturbance Kernel – Severity of disturbances

P(x ,A)

This state dependence is important!!
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Disturbance kernel

x

A
P(x,A)
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Stochastic flow-kick model

t
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X
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Many paths
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Distribution of Xt

X
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Evolution operator

Initial Distribution:

µ0

Evolved Distributions:

µ0 → µt =: µ0U t
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A direct approach: Differential forward equation for
time-dependent density

For absolutely continuous distributions and disturbance kernel,

dµt

dx
= ρ(x , t) , P(x , dy) = p(x , y)dy

∂tρ(x , t) = −∂x (g(x)ρ(x , t))−Λ(x)ρ(x , t)+

∫
p(y , x)Λ(y)ρ(y , t) dy .
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A direct approach: Differential forward equation for
time-dependent density

For absolutely continuous distributions and disturbance kernel,

dµt

dx
= ρ(x , t) , P(x , dy) = p(x , y)dy

∂tρ(x , t) = −∂x (g(x)ρ(x , t))−Λ(x)ρ(x , t)+

∫
p(y , x)Λ(y)ρ(y , t) dy .

Deterministic evolution
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A direct approach: Differential forward equation for
time-dependent density

For absolutely continuous distributions and jump kernel,

dµt

dx
= ρ(x , t) , P(x , dy) = p(x , y)dy

∂tρ(x , t) = −∂x (g(x)ρ(x , t))−Λ(x)ρ(x , t)+

∫
p(y , x)Λ(y)ρ(y , t) dy .

Disturbance occurrence
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A direct approach: Differential forward equation for
time-dependent density

For absolutely continuous distributions and jump kernel,

dµt

dx
= ρ(x , t) , P(x , dy) = p(x , y)dy

∂tρ(x , t) = −∂x (g(x)ρ(x , t))−Λ(x)ρ(x , t)+

∫
p(y , x)Λ(y)ρ(y , t) dy .

Disturbance severity
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Fundamental questions

Does there exist a distribution π on X with

dTV (µt , π)→ 0 as t →∞?

Given δ > 0, how large must t be so that

dTV (µt , π) < δ ?
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Evolved distributions

X

t

dTV( , t)
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Evolved distributions
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Evolved distributions
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Evolved distributions
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Equilibrium distributions

Question:
What information can we extract from this
equilibrium distribution?

Answer:
We can compute the fraction of time (in the
long run) that the process Xt spends in any
measurable subset of our state space.

JAMES BRODAConvergence and Equilibrium for Stochastic Models of Ecological Disturbances



Theorem (B.)
Under appropriate assumptions, Xt is uniformly
ergodic with a unique stationary distribution, π,
and

dTV (µt , π) ≤ (1− β)t

for any initial distribution µ0.

Note: The value of β is explicitly constructed.
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How is β computed?

1 Discretize the process (in time).

2 Develop minorization for the discretization.

3 Deduce bounds for the original
continuous-time process.
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Discrete time transition kernel

x

A
U∆t(x,A)
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Uniform minorization

Ingredients:

1 Probability measure η on X
2 β > 0

With
U∆t(x ,A) ≥ βη(A)

for any measurable set A and all x ∈ X .
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Weak formulation

Let f : X 7→ R be an observable, then

〈µ∆t , f 〉 = 〈µ0U∆t , f 〉
= 〈µ0,U∆t f 〉

with
[U∆t f ](x) ..= E[f (X∆t) |X0 = x ]

and
〈µ0,U∆t f 〉 =

∫
[U∆t f ](x)dµ0(x)
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Alternative characterization of minorization

The minorization condition

U∆t(x ,A) ≥ βη(A)

is equivalent to requiring for any nonnegative
observable f , and for all x ∈ A,

[U∆t f ](x) ≥ β

∫
f (y)dη(y) .
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Infinitesimal generator

To control the discrete-time evolution operator, U∆t , we
can study the infinitesimal generator L of U t .

L acts on observables, f , according to

[Lf ](x) = lim
t↘0

U t f (x)− f (x)

t
.

In our case,

[Lf ](x) = f ′(x)g(x) + Λ(x)

∫
P(x , dy)[f (y)− f (x)] .
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0 ∆t

x

φ∆t(0)

φ∆t(x)
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Uniform minorization for compact one-dimensional
state spaces

1 dη
dx = ∆t−ψ(0,x)

C1
1{0 ≤ x ≤ φ∆t(0)}

2 β∆t = e−λ∆tC2

φ∆t (0)∫
0

[∆t − ψ(0, x)] dx

with ψ defined by

x1 = φt(x0) ⇐⇒ t = ψ(x0, x1)

and
λ ≥ Λ(x) for all x ∈ X
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Optimal ∆t

Plots of (1− β∆t )
bt/∆tc vs. t for various ∆t
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Convergence rates

Question:
Why do convergence rates matter?

Answers:
Determine how long before “long-run” averages are
realized.

Provide guidance for numerical methods of approximating
stationary distributions.

Relevant for sub-sampling techniques used with Monte
Carlo methods in likelihood-based inference.
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Applications of semistochastic /
piecewise-deterministic models

Ecological disturbances

Precipitation models

Growth-fragmentation processes

Human behaviour

Viral reproduction

JAMES BRODAConvergence and Equilibrium for Stochastic Models of Ecological Disturbances



Select references

1 J. Broda, A. Grigo, and N.P. Petrov. Convergence rates for
semistochastic processes. Discrete and Continuous
Dynamical Systems - B, 24(1) (2019), 109-125.

2 Benaim, Michel, et al. Qualitative properties of certain
piecewise deterministic Markov processes. Annales de
l’IHP Probabilites et statistiques.51(3) (2015), 1040-1075.

3 M. C. A. Leite, N. P. Petrov and E. Weng, Stationary
distributions of semistochastic processes with disturbances
at random times and with random severity, Nonlinear
Analysis: Real World Applications, 13 (2012), 497–512.

4 B. Beckage, W. J. Platt and L. J. Gross, Vegetation, fire,
and feedbacks: a disturbance-mediated model of
savannas, The American Naturalist, 174 (2009), 805–818.

5 B. J. Cairns, Evaluating the expected time to population
extinction with semi-stochastic models, Mathematical
Population Studies, 16 (2009), 199–220.

JAMES BRODAConvergence and Equilibrium for Stochastic Models of Ecological Disturbances


