Examples

To illustrate the ideas in the previous sections, let's consider the following examples.

Example 8.1: Let Examples1.jpg , and let Examples2.jpg satisfy

The set Examples9.jpg is an attractor satisfying

Examples10.jpg

Proof: It is a standard exercise to show that Examples11.jpg is an attractor with Examples12.jpg . Let

Examples13.jpg

Note that Examples14.jpg is an attractor block associated with Examples15.jpg for Examples16.jpg and that Examples17.jpg . Therefore, Examples18.jpg , which establishes the inequality

Examples19.jpg

Now consider the sequence Examples20.jpg , where Examples21.jpg , and Examples22.jpg , for Examples23.jpg . If Examples24.jpg , then Examples25.jpg , which means that Examples26.jpg . Let Examples27.jpg satisfy Examples28.jpg , for Examples29.jpg , and Examples30.jpg . Define Examples31.jpg by

Examples32.jpg

Note that Examples33.jpg is an Examples34.jpg -pseudo-orbit for any Examples35.jpg and that Examples36.jpg leaves any compact subset of Examples37.jpg . Since Examples38.jpg can be chosen arbitrarily close to Examples39.jpg , this statement implies that

Examples40.jpg

and the proof is complete.

Example 8.4: Let Examples41.jpg , and let Examples42.jpg be the general quadratic map in standard form:

Examples43.jpg

There is a unique value of Examples44.jpg , which happens to be close to Examples45.jpg , for which there is a superattracting orbit of period Examples46.jpg with itinerary Examples47.jpg . In other words, there is a periodic orbit Examples48.jpg , with Examples49.jpg , Examples50.jpg and Examples51.jpg , for Examples52.jpg . One can show that

Examples53.jpg

Note that the intensity is of the order Examples54.jpg when Examples55.jpg is Examples56.jpg . Therefore, this particular family of attractors will be extremely difficult to detect by direct computer simulation for even relatively modest periods.

Example 8.5: Let Examples57.jpg , and let Examples58.jpg be the time 1 map of the vector field

Examples59.jpg

Examples60.jpg

where Examples61.jpg are polar coordinates on Examples62.jpg . For positive values of Examples63.jpg , this map has two attractors,

Examples64.jpg

Examples65.jpg

where Examples66.jpg . Note that Examples67.jpg is an invariant circle, Examples68.jpg is a set of Examples69.jpg fixed points, and Examples70.jpg . Here one can estimate that

Examples71.jpg

Examples72.jpg

for small Examples73.jpg .

This example appears to be artficial, but it is related to supercritical Hopf bifurcation for maps of the plane. The attractor Examples74.jpg corresponds to the invariant circle, while the attractor Examples75.jpg corresponds to the periodic sink with rotation number Examples76.jpg . One can see that, while the invariant circle is not too difficult to detect with direct computer simulations, even modestly high resonances pose a problem. For example, with 64 bit arithmetic, one can reasonably expect to detect an invariant circle with a radius of Examples77.jpg . However, one would expect to have difficulty detecting a periodic sink of period 33 for a radius less than Examples78.jpg . Experience has shown that these resonances are indeed difficult to find with direct computer simulations [1].


[Left] Discrete approximations
[Up] Main entry point

[TOC] [Glossary] [Help]


Copyright (c) 1998 by Richard McGehee, all rights reserved.
Last modified: July 31, 1998.