No notes, texts, cellular devices or computers are allowed on this quiz. You may use a scientific calculator. Please show all work to receive full credit.

1. Let \(h(x) = 5x^2 - 3x^5 \).
 (a) Find the \(x \) values where \(h'(x) = 0 \)
 \[h'(x) = 10x - 15x^4 = 5x(2 - 3x^3) = 0 \]
 \(x = 0 \) or \(2 - 3x^3 = 0 \)
 \[3x^3 = 2 \]
 \[x = \frac{2}{3} \]
 increasing on \((0, \frac{2}{3}) \)
 decreasing on \((-\infty, 0) \cup (\frac{2}{3}, \infty) \)

 (b) On what intervals is \(h \) increasing?
 (c) On what intervals is \(h \) decreasing?

 (d) Determine the local maxima and minima for \(h \)
 \[\text{local min: (0, 0)} \quad \text{local max: } (\frac{2}{3}, 5\left(\frac{2}{3}\right)^2 - 3\left(\frac{2}{3}\right)^5) \]

 (e) Find the \(x \) values where \(h''(x) = 0 \)
 \[h''(x) = 10 - 60x^2 = 0 \]
 \(x^2 = \frac{1}{6} \)
 \[x = \frac{1}{\sqrt{6}} \]

 (f) On what intervals is \(h \) concave up?
 (g) On what intervals is \(h \) concave down?

 (h) What are the inflection points for \(h \)?
 \[(\frac{2}{3}, 5\left(\frac{2}{3}\right)^2 - 3\left(\frac{2}{3}\right)^5) \]

2. Given that \(f(x) = \ln x \) is both continuous on the interval \([1, 4] \) and differentiable on \((1, 4) \), find all numbers \(c \) that satisfy the conclusion of the Mean Value Theorem.
 The average slope of \(\ln(x) \) on \([1, 4] \) is
 \[\frac{\ln(4) - \ln(1)}{4 - 1} = \frac{\ln(4)}{3} = \frac{\ln(4)}{3} \]
 The derivative of \(f(x) \) is \(f'(x) = \frac{1}{x} \)
 The Mean Value Theorem states that there exists \(c \) in \((1, 4) \)
 with \(f'(c) \) = average slope of \(\ln(x) \) on \([1, 4] \) = \(\frac{\ln(4)}{3} \)
 So we want \(\frac{1}{c} = \frac{\ln(4)}{3} \) so \(c = \frac{3}{\ln(4)} \)
 Check: is \(\frac{3}{\ln(4)} \) in \((1, 4) \)? \(\ln(4) \approx 1.4 \), so \(\frac{3}{\ln(4)} \approx 2.2 \). Good!