A giant snowdrift has formed on the Quad! Its cross section matches the function $\sin(x)$ from 0 to π.

1) Sketch the tangent line to the curve $y = \sin(x)$ at the point $P = (2\pi/3, \sqrt{3}/2)$. What does the slope of the tangent line at P represent, in terms of the snowdrift?

3) Approximate the slope of the tangent at P using a collection of secant lines as follows:

 (a) Plot the point $Q_1 = (\pi/2, 1)$ on the graph and sketch the secant line PQ_1.

 (b) The slope of secant line PQ_1 has been determined for you as an example, using the chart above. Review this calculation and ask if you have questions.

 (c) Choose a new point, Q_2, that is closer to P than Q_1. Plot it on the graph and sketch the new secant line PQ_2.

 (d) Use the chart to calculate the slope of PQ_2.

 (e) Repeat steps (c) and (d) for a third point, Q_3, that is really, really close to P.

 (f) What limiting value does the slope of PQ seem to approach as Q approaches P? (This is, loosely speaking, the slope of the tangent at P.)
4) Would you find a different limiting value for the slope of PQ if Q approached P from the right? (You can try this if you have time.)

5) Instead of choosing actual numbers for the coordinates of Q, let $Q = (x, \sin(x))$. Write an expression for the slope of secant line PQ in terms of x.