Chapter 4

Problem 19. One possibility is

000
001
011
010
110
100
101
111

All 8 length 3 bit strings are used exactly once, and each pair of consecutive strings differ in only 1 place. Therefore this is a Gray code. However, the last string 111 and the first string 000 differ in more than one place, so the code is not cyclic.

Problem 37. Let $x \in X$ be given. Then $xR'x$ and $xR''x$ by reflexivity. Therefore xRx. Hence R is reflexive.

Let $x, y \in X$ and suppose that xRy and yRx. Then in particular $xR'y$ and $yR'x$ so $x = y$, by antisymmetry of R'. Hence, R is antisymmetric.

Let $x, y, z \in X$ and suppose xRy and yRz. Then $xR'y$ and $yR'z$, so $xR'z$ by transitivity of R'. Similarly, $xR''y$ and $yR''z$, so $xR''z$ by transitivity of R''. It follows that xRz. Hence R is transitive.

Chapter 5

Problem 10. Let A be the set of pairs (i, S) where $i \in S \subseteq \{1, 2, \ldots, n\}$ and $|S| = k$. There are $\binom{n}{k}$ possible choices for S, and any such choice of S has exactly k elements so there are always k choices for i. By the multiplication principle

$$|A| = \binom{n}{k} k.$$

On the other hand, we can count A another way by first selecting i. We know $i \in \{1, 2, \ldots, n\}$ so there are n such choices. Fixing such a choice, we know that we must have $i \in S$ so it remains to decide on the $k-1$ elements of $S \setminus i$. These can be picked arbitrarily from $\{1, 2, \ldots, n\}$ except that we cannot take i since it is already being used. So $S \setminus i$ can be any $k-1$ subset of the $n-1$ element set $\{1, 2, \ldots, n\} \setminus \{i\}$. The number of such choices is then $\binom{n-1}{k-1}$. By the multiplication principle,

$$|A| = n \binom{n-1}{k-1}.$$
Combined with the previous this implies
\[k \binom{n}{k} = n \binom{n-1}{k-1} \]

Problem 11. Let \(S \) be an \(n \)-element set, and let \(a, b, c \in S \) be three distinct elements. There are \(\binom{n}{k} \) \(k \)-element subsets of \(S \) and \(\binom{n-3}{k} \) \(k \)-element subsets of \(S \setminus \{a, b, c\} \). Hence there are
\[\binom{n}{k} - \binom{n-3}{k} \]
k-element sets that are contained in \(S \) but not in \(S \setminus \{a, b, c\} \). In other words, the left hand side of the problem represents the number of \(k \)-element subsets of \(S \) that include at least one of \(a, b, \) or \(c \).

Break such subsets into the following three cases:
1. subsets that contain \(a \)
2. subsets that do not contain \(a \) but do contain \(b \)
3. subsets that contain neither \(a \) nor \(b \), but do contain \(c \).

These cases are clearly mutually exclusive. The only case not covered is a subset that contains none of \(a, b, \) or \(c \), which are precisely the ones we wanted to avoid. It remains to count the number of subsets occurring in each case:

1. If a \(k \)-element subset contains \(a \), there are \(\binom{n-1}{k-1} \) choices for the remaining \(k-1 \) elements.
2. If a \(k \)-element subset contain \(b \) but not \(a \), then the other \(k-1 \) elements must come from the \((n-2) \)-element set \(S \setminus \{a, b\} \). There are \(\binom{n-2}{k-1} \) possibilities.
3. If a \(k \)-element subset contains \(c \) but neither \(a \) nor \(b \), then the other \(k-1 \) elements must come from the \((n-3) \)-element set \(S \setminus \{a, b, c\} \). There are \(\binom{n-3}{k-1} \) possibilities.

We have
\[\binom{n-1}{k-1} + \binom{n-2}{k-1} + \binom{n-3}{k-1} \]
total subsets, which must equal \(\binom{n}{k} - \binom{n-3}{k} \) since they count the same thing.

Problem 15. We know that \(k \binom{n}{k} = n \binom{n-1}{k-1} \). Therefore
\[
\sum_{k=1}^{n} (-1)^{k-1} k \binom{n}{k} = \sum_{k=1}^{n} (-1)^{k-1} n \binom{n-1}{k-1} \\
= n \sum_{k=1}^{n} (-1)^{k-1} \binom{n-1}{k-1} \\
= n \sum_{j=0}^{n-1} (-1)^{j} \binom{n-1}{j}
\]
where we have made the subsitution \(j = k - 1 \). We have proven
\[
\sum_{j=0}^{n-1} (-1)^{j} \binom{n-1}{j} = 0
\]
so the original sum is also 0.

Problem 19. First

\[
2 \binom{m}{2} + \binom{m}{1} = \frac{2m(m - 1)}{2} + m = m(m - 1) + m = m^2.
\]

Therefore

\[
\sum_{m=1}^{n} m^2 = \sum_{m=1}^{n} \left(2 \binom{m}{2} + \binom{m}{1} \right)
\]

\[
= 2 \sum_{m=1}^{n} \binom{m}{2} + \sum_{m=1}^{n} \binom{m}{1}
\]

\[
= 2 \sum_{m=2}^{n} \binom{m}{2} + \sum_{m=1}^{n} \binom{m}{1}
\]

where the last modification is justified because \(\binom{1}{2} = 0\). We can apply the identity

\[
\sum_{m=k}^{n} \binom{m}{k} = \binom{n + 1}{k + 1}
\]

twice to obtain

\[
\sum_{m=1}^{n} m^2 = 2 \binom{n + 1}{3} + \binom{n + 1}{2}
\]

\[
= \frac{2(n + 1)n(n - 1)}{6} + \frac{(n + 1)n}{2}
\]

\[
= \frac{(n + 1)n}{2} \left(\frac{2(n - 1)}{3} + 1 \right)
\]

\[
= \frac{(n + 1)n}{2} \frac{2n + 1}{3}
\]

\[
= \frac{n(n + 1)(2n + 1)}{6}
\]