Problem 1. (b) The first several values of $f_0 + f_2 + \ldots + f_{2n}$ are

<table>
<thead>
<tr>
<th>n</th>
<th>$f_0 + f_2 + \ldots + f_{2n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$0 + 1 = 1$</td>
</tr>
<tr>
<td>2</td>
<td>$0 + 1 + 3 = 4$</td>
</tr>
<tr>
<td>3</td>
<td>$0 + 1 + 3 + 8 = 12$</td>
</tr>
<tr>
<td>4</td>
<td>$0 + 1 + 3 + 8 + 21 = 33$</td>
</tr>
</tbody>
</table>

These numbers are all 1 less than another Fibonacci number. For example, $f_0 + f_2 + f_4 + f_6 = 34 - 1 = f_7 - 1$. As such, guess that

\[f_0 + f_2 + \ldots + f_{2n} = f_{2n+1} - 1. \]

This holds when $n = 0$ because $f_0 = 0 = f_1 - 1$. For the induction step, assume that $n > 0$ and that

\[f_0 + f_2 + \ldots + f_{2n-2} = f_{2n-1} - 1. \]

Then

\[
\begin{align*}
 f_0 + f_2 + \ldots + f_{2n} &= (f_0 + f_2 + \ldots + f_{2n-2}) + f_{2n} \\
 &= f_{2n-1} - 1 + f_{2n} \\
 &= f_{2n+1} - 1
\end{align*}
\]

In the last step, we used $f_{2n+1} = f_{2n-1} + f_{2n}$ by the Fibonacci recurrence.

(d) The first several values are

<table>
<thead>
<tr>
<th>n</th>
<th>$f_0^2 + f_1^2 + \ldots + f_n^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0^2 = 0$</td>
</tr>
<tr>
<td>1</td>
<td>$0^2 + 1^2 = 1$</td>
</tr>
<tr>
<td>2</td>
<td>$0^2 + 1^2 + 1^2 = 2$</td>
</tr>
<tr>
<td>3</td>
<td>$0^2 + 1^2 + 1^2 + 2^2 = 6$</td>
</tr>
<tr>
<td>4</td>
<td>$0^2 + 1^2 + 1^2 + 2^2 + 3^2 = 15$</td>
</tr>
<tr>
<td>5</td>
<td>$0^2 + 1^2 + 1^2 + 2^2 + 3^2 + 5^2 = 40$</td>
</tr>
</tbody>
</table>

Each of these is a product of two consecutive Fibonacci numbers. For example, $f_0^2 + f_1^2 + \ldots + f_5^2 = 40 = (5)(8) = f_5 f_6$. As such, conjecture that

\[f_0^2 + f_1^2 + \ldots + f_n^2 = f_n f_{n+1}. \]

This works for $n = 0$ as $f_0^2 = 0 = f_0 f_1$. Now suppose $n > 0$ and $f_0^2 + f_1^2 + \ldots + f_{n-1}^2 = f_{n-1} f_n$. Then

\[
\begin{align*}
 f_0^2 + f_1^2 + \ldots + f_n^2 &= (f_0^2 + f_1^2 + \ldots + f_{n-1}^2) + f_n^2 \\
 &= f_{n-1} f_n + f_n^2 \\
 &= f_n (f_{n-1} + f_n) = f_n f_{n+1}
\end{align*}
\]

as desired.
Problem 4. The initial conditions are easily checked. As for the recurrence
\[f_n = f_{n-1} + f_{n-2} \]
\[= f_{n-2} + f_{n-3} + f_{n-4} = f_{n-2} + 2f_{n-3} + f_{n-4} \]
\[= f_{n-3} + f_{n-4} + 2(f_{n-4} + f_{n-5}) + f_{n-4} = f_{n-3} + 4f_{n-4} + 2f_{n-5} \]
\[= f_{n-4} + f_{n-5} + 4f_{n-4} + 2f_{n-5} = 5f_{n-4} + 3f_{n-5} \]

It follows that \(f_n \equiv 3f_{n-5} \pmod{5} \). Therefore \(5|f_n \) if and only if \(5|3f_{n-5} \) which occurs if and only if \(5|f_{n-5} \) (multiplying by 3 does not affect divisibility by 5). It follows by induction that \(f_n \) is divisible by 5 if and only if \(f_r \) is, where \(r \in \{0, 1, 2, 3, 4\} \) is the remainder of \(n \) by 5. Now \(5|0 = f_0 \), but none of \(f_1, f_2, f_3, f_4 \) are divisible by 5. Therefore \(f_n \) is divisible by 5 if and only if \(n \equiv 0 \pmod{5} \).

Problem 6. First we will prove that if \(a, b \geq 1 \) then \(f_{a+b} = f_{a-1}f_b + f_a f_{b+1} \). The proof is by induction on \(a \) and \(b \). If \(a = 1 \) then
\[f_{1+b} = 0f_b + 1f_{b+1} = f_0f_b + f_1f_{b+1} \]
and if \(b = 1 \) then
\[f_{a+1} = f_{a-1} + f_a = f_{a-1}f_1 + f_a f_2. \]
Now suppose \(a, b \geq 2 \) and that the result holds for any pair obtained by decreasing \(a \) and/or \(b \). Then
\[f_{a+b} = f_{a+b-1} + f_{a+b-2} \]
\[= (f_{a-1}f_{b-1} + f_1 f_b) + (f_{a-2}f_{b-1} + f_{a-1} f_b) \]
by the induction hypothesis applied to the pairs \(a, b-1 \) and \(a-1, b-1 \). As such
\[f_{a+b} = (f_{a-1} + f_{a-2})f_{b-1} + (f_a + f_{a-1})f_b \]
\[= f_a f_{b-1} + f_{a+1} f_b \]
as desired.

Now suppose that \(m \) is divisible by \(n \), say \(m = kn \). Show that \(f_n | f_m \) by induction on \(k \). If \(k = 1 \) then \(n = m \) so \(f_n = f_m \). Now suppose \(k > 1 \) and the result holds for smaller \(k \). Then
\[f_m = f_{kn} \]
\[= f_{n+(k-1)n} \]
\[= f_{n-1}f_{(k-1)n} + f_n f_{(k-1)n+1} \]
Therefore
\[f_m \equiv f_{n-1}f_{(k-1)n} \pmod{f_n}. \]
But by the induction hypothesis, \(f_{(k-1)n} \) is divisible by \(f_n \). Therefore \(f_m \) is divisible by \(f_n \) as well.

Problem 17. Let \(g(x) = \sum_{n \geq 0} h_n x^n \). Then \(g(x) \) will have four factors, one for each type of fruit. Each will have the form the sum of \(x^i \) as \(i \) ranges over the legal numbers of the given fruit. Therefore
\[g(x) = (1 + x^2 + x^4 + \ldots)(1 + x + x^2)(1 + x^3 + x^6 + \ldots)(1 + x) \]
The two infinite sums can be written in closed form
\[
g(x) = \frac{1}{1-x^2} \frac{1}{1-x^3} = \frac{1}{(1-x)(1+x)(1-x^2)}
\]
We have seen that this is the generating function for the counting numbers 1, 2, 3, …. Therefore \(h_n = n + 1 \).

Problem 18. Again there will be four factors, one for each term in the left hand side of the expression for \(n \). The first term must be even, the second one divisible by 5, and the fourth one must be divisible by 7. The generating function is
\[
g(x) = (1 + x^2 + x^4 + \ldots)(1 + x^5 + x^{10} + \ldots)(1 + x + x^2 + \ldots)(1 + x^7 + x^{14} + \ldots)
\]
\[
= \frac{1}{1-x^2} \frac{1}{1-x^5} \frac{1}{1-x} \frac{1}{1-x^7}
\]

Problem 19. We have seen that
\[
\frac{1}{(1-x)^{k+1}}
\]
is the generating function for the sequence \(\binom{k}{k}, \binom{k+1}{k}, \binom{k+2}{k}, \ldots \). Letting \(k = 2 \)
\[
\frac{1}{(1-x)^3} = \sum_{n \geq 0} \binom{n+2}{2} x^n.
\]
Therefore
\[
\frac{x^2}{(1-x)^3} = \sum_{n \geq 0} \binom{n+2}{2} x^{n+2}
\]
\[
= \sum_{m \geq 2} \binom{m}{2} x^m
\]
\[
= \sum_{m \geq 0} \binom{m}{2} x^m
\]
The last step is justified because \(\binom{0}{2} = \binom{1}{2} = 0 \). So
\[
\frac{x^2}{(1-x)^3}
\]
is the desired generating function.