Chapter 8

Problem 7. The portion of the difference table that can be easily computed is

\[
\begin{array}{cccc}
1 & -1 & 3 & 10 \\
-2 & 4 & 7 & \\
6 & & 3 & \\
-3 & & & \\
\end{array}
\]

The 0th diagonal begins \(c_0 = 1\), \(c_1 = -2\), \(c_2 = 6\) and \(c_3 = -3\). Since \(h_n\) is a degree 3 polynomial, \(c_n = 0\) for \(n > 3\).

In general, we have proven

\[h_n = c_0 \binom{n}{0} + c_1 \binom{n}{1} + \ldots + c_d \binom{n}{d} \]

and

\[\sum_{k=0}^{n} h_k = c_0 \binom{n+1}{1} + c_1 \binom{n+1}{2} + \ldots + c_d \binom{n+1}{d+1} \]

where \(d\) is the degree of the polynomial. In our case, \(d = 3\), and the \(c_i\) are as above, so

\[h_n = \binom{n}{0} - 2\binom{n}{1} + 6\binom{n}{2} - 3\binom{n}{3} = 1 - 2n + 3n(n - 1) - \frac{n(n - 1)(n - 2)}{2} \]

and

\[\sum_{k=0}^{n} h_k = \binom{n+1}{1} - 2\binom{n+1}{2} + 6\binom{n+1}{3} - 3\binom{n+1}{4} = n + 1 - (n + 1)n + (n + 1)n(n - 1) - \frac{(n + 1)n(n - 1)(n - 2)}{8} \]

Problem 12. (c) By definition, \(S(n, n-1)\) counts the number of ways to partition \(\{1, 2, \ldots, n\}\) into \(n - 1\) nonempty subsets. The only way to accomplish this is to put two elements together in one box (i.e. subset), and give each of the remaining \(n - 2\) their own box. Conversely, for any choice of two elements, it is possible to put them together and leave everything else separate to get a legal partition. So \(S(n, n-1)\) equals the number of pairs of elements from 1 through \(n\), namely \(S(n, n-1) = \binom{n}{2}\).

Problem 13. For concreteness, let \(X = \{1, 2, \ldots, p\}\) and \(Y = \{1, 2, \ldots, k\}\). Recall that

\[k!S(p, k) \]

equals the number of ordered partitions of \(X\) into \(k\) non-empty subsets \(A_1, A_2, \ldots, A_k\). Given a surjection \(f : X \to Y\), it is natural to associate the partition \(A_1 = f^{-1}(1), \ldots, A_k = f^{-1}(k)\).
\[A_k = f^{-1}(k). \] In words, \(A_i \) is the set of elements of \(X \) that map to \(i \). This forms a partition since each element of \(X \) is mapped to exactly one \(i \in \{1, 2, \ldots, k\} \). Each \(A_i \) is nonempty because \(f \) is surjective so each \(i \) has at least one element mapping to it.

It remains to show that the operation above taking a surjection \(f \) to a partition \(A_1, \ldots, A_k \) of \(X \) into nonempty subsets is reversible. Indeed, given a partition \(A_1, \ldots, A_k \), one can define a function \(f \) by \(f(j) = i \) where \(A_i \) is the unique set containing \(j \). Since the \(A_i \) are all nonempty, \(f \) will be surjective. It is clear that this procedure is inverse to the one from before. So the number of surjections \(f \) also equals \(k!S(p, k) \).

Problem 19.

(a) The expression \(s(n, 1) \) counts the number of partitions of \(\{1, 2, \ldots, n\} \) into a single circular permutation. In other words, \(s(n, 1) \) equals the number of circular permutations of \(\{1, 2, \ldots, n\} \) which we have seen equals \((n-1)! \).

(b) The expression \(s(n, n-1) \) counts the number of partitions of \(\{1, 2, \ldots, n\} \) into \(n-1 \) nonempty circular permutations. By the pigeonhole principle the only possibility is that one of the permutations contains 2 elements and the other \(n-2 \) contain 1 each. There are \(\binom{n}{2} \) choices of the pair of elements to put together. There is no further freedom because there is just one circular permutation of 2 elements. So \(s(n, n-1) = \binom{n}{2} \).

Problem 29. Each such partition has the form \(n = 2 + \ldots + 2 + 1 + \ldots + 1 \) where the number of 2’s equals \(a \) and the number of 1’s equals \(b \). Here, \(a \) and \(b \) must be nonnegative integers satisfying \(2a + b = n \). It follows that
\[
0 \leq a \leq \frac{n}{2}.
\]

Put another way, the possible values of \(a \) are \(0, 1, 2, \ldots, \lfloor n/2 \rfloor \). Each gives a single solution, so there are \(\lfloor n/2 \rfloor + 1 \) total solutions
\[
(a, b) \in \{(0, n), (1, n - 2), (2, n - 4), \ldots, (\lfloor n/2 \rfloor, n - 2\lfloor n/2 \rfloor)\}.
\]

This also gives the total number of partitions with each part at most 2.

1. **Chapter 14**

Problem 14. There are \(2^3 = 8 \) total 2-colorings which can be grouped by equivalence as follows:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>W</td>
<td>WR</td>
<td>RR</td>
</tr>
</tbody>
</table>

Hence there are 4 nonequivalent colorings. Given 3 colors there are \(3^3 = 27 \) total colorings, arranged as follows:
Note for example that $R \ W B$ and $R \ BW$ are equivalent because they are reflections of each other. So there are 10 nonequivalent colorings.