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0.1 The MVT

Recall the Extreme Value Theorem (EVT) from class: If the function f is
defined and continuous on a closed bounded interval [a, b] then there is some
point ¢ € [a,b] where it takes on its maximum value M = f(c) and some
point d € [a, b] where it takes on its minimum value m = f(d). Thus

M = f(c) 2 f(x) = f(d) =m
for all z € [a, b].

Theorem 1 Fermat’s Theorem. (Not his last one but a very useful observa-
tion that is easy to prove.) Suppose the function f is defined and continuous
on a closed bounded interval [a,b] and takes on an extreme value (either its
mazimum M or its minimum m) at an interior point ¢ of the interval, so
a < ¢ <b. If the derivative f'(c) exists, then f'(c) = 0.

PROOF: To be definite, we assume that f(c) = M. (The proof for the case
f(c) = m is virtually the same.) By definition
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Since f(c¢) = M is a maximum, it follows that for Az > 0 we have
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since the numerator is nonpositive and the denominator is positive. On the
other hand, for Ax < 0 we have
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since the numerator is nonpositive and the denominator is negative. However
by assumption the limit (1) exists and the same value is obtained as Az — 0

through postitive or negative values. Thus we must have f'(c) = 0. Q.E.D.
Let a < b be finite numbers.

Theorem 2 Mean Value Theorem (MVT). Suppose the function f is defined
and continuous on a closed bounded interval [a,b] and differentiable on the
open interval (a,b). Then there is a point ¢, a < ¢ < b, such that

f(b) = f(a)
b—a

= f'(c).

PROOF: Consider the secant line ¢ that connects the endpoints (a, f(a))
and (b, f(b) on the graph of the function y = f(z). Using the point-slope
equation for a line, we see that the equation for the secant line is
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For each z € [a,b] let g(z) be the directed distance between the curve f(z)
and the line y(x):
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Note that g(a) = g(b) = 0 and
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Since ¢ vanishes at the endpoints and ¢ is continuous on [a,b] by the EVT
there must be some interior point ¢ € (a,b) such that g(c) is an extreme
value of g. By Fermat’s theorem ¢'(¢) = 0, which means

f(b) = f(a)
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Q.E.D.



0.2 The EMVT

Theorem 3 FEztended Mean Value Theorem (EMVT). Suppose f(z),g(x)
are functions such that

1. f,g are defined and continuous on the closed bounded interval |a, b,
a <b.

2. f,q are differentiable on the open interval (a,b).
3. ¢'(z) #0 for all x € (a,b).

Then there ezists a ¢ € (a,b) such that

NOTE: If g(x) = z, then this is just the statement of the Mean Value The-
orem (MVT).

PROOF: For the MVT we considered the function

F@) = £0) - 2o = £0) - (1O =L9) (o -0 - st0)

We observed that F'(a) = F(b) = 0 and that there must be a relative ex-
tremum of F' at some ¢ € (a,b). Then by the Fermat Theorem we must have

F'(¢) =0. But

For the EMVT we apply the same procedure to the function
f(0) — f(a)
g9(b) —g(a)

Again F(a) = F(b) = 0 and there must be a relative extremum of F' at
some ¢ € (a,b). By the Fermat Theorem and assumption 1. we must have
F'(c) = 0. Thus
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f(0) = f(a)
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) J(c) =0.
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or

since ¢'(c) # 0. Q.E.D.

0.3 A 8 form of the L’Hospital Rule

Theorem 4 Let f(x) and g(x) be differentiable in an open neighborhood N
containing r = a, (but not necessarily at x = a), f'(x),q'(z) continuous in
the same neighborhood, and suppose ¢'(x) # 0 in N. Suppose
lim /() =0, limgle) =0
Then )
lim —f(x) = lim f/(x)
h—a g(x) h—a g (gj)
where the equality is meant in any one of the senses

Y

1. Both limits exist and are equal.
2. Both limits diverge to 4+00.

3. Both limits diverge to —oc.
If the right hand limit fails to exist, the rule is inconclusive.

Corollary 1 The Rule is also true if the limits are right hand (x — a+) or
left-hand (x — a—).

PROOF OF THE RULE: Since lim,_,, f(z) =0, lim,,g(z) = 0, we can
extend the domains of f, g to = a, if necessary, by defining f(a) = g(a) = 0.
Then f and g are continuous at a. Now let x be in the neighborhood N, with
x > a. Then the EMVT applies to the interval [a, 2| and there is a y € (a, x)

such that )
Fly) _ fl@)= fla) _ f@)
g gx)—gla) g(z)
!/ /

lim M = lim f/(y) = lim f/(x)
vt g(x)  amet g/(y)  emat g'(x)
if the last limit exists or diverged to +oo. Similarly, if x < a we apply the
EMVT to the interval [z, a] and get the same result for the limit as z — a—.
Q.E.D.

Thus




0.4 A > form of the L’Hospital Rule

The proofs of the 2 forms of the L'Hospital Rule are a little trickier. We
will prove a right-hand limit version; the proof of the left-hand limit case
is virtually identical. If both left and right-hand limits exist and are equal,
then the two-sided limit exists.

Theorem 5 Suppose

1. f(z) and g(x) are differentiable in an open interval (a,b), and f'(x), ¢'(z)
are continuous in the same neighborhood

2. ¢'(x) #0 on (a,b)

3. lim, oy f(z) = +o00, lim, .. g(x) = 400
Then if
(@)
h—at g'(x)
we also have
lim M =1L,
h—at g(z)

where the equality is meant in any one of the senses
1. Both limits exist and are equal.
2. Both limits diverge to 4o00.
3. Both limits diverge to —oo.
The test is inconclusive if the right hand limit fails to exist.

PROOF: Let a < x < y < b and apply the EMVT to the interval [z, y]. Then
there is a £ € (z,y) such that
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Now we let both x and y approach a, but with z making the approach more
rapidly than y, so that

limM zlimw =0.
f(x) 9(x)
This can be done because of assumption 3. Thus
. g(xz)
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and, since g :Eg is continuous,
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It follows from (2) that
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Q.E.D.



