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0.1 The MVT

Recall the Extreme Value Theorem (EVT) from class: If the function f is
defined and continuous on a closed bounded interval [a, b] then there is some
point c ∈ [a, b] where it takes on its maximum value M = f(c) and some
point d ∈ [a, b] where it takes on its minimum value m = f(d). Thus

M = f(c) ≥ f(x) ≥ f(d) = m

for all x ∈ [a, b].

Theorem 1 Fermat’s Theorem. (Not his last one but a very useful observa-
tion that is easy to prove.) Suppose the function f is defined and continuous
on a closed bounded interval [a, b] and takes on an extreme value (either its
maximum M or its minimum m) at an interior point c of the interval, so
a < c < b. If the derivative f ′(c) exists, then f ′(c) = 0.

PROOF: To be definite, we assume that f(c) = M . (The proof for the case
f(c) = m is virtually the same.) By definition

f ′(c) = lim
∆x→0

f(c + ∆x) − f(c)

∆x
. (1)

Since f(c) = M is a maximum, it follows that for ∆x > 0 we have

f(c + ∆x) − f(c)

∆x
≤ 0,
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since the numerator is nonpositive and the denominator is positive. On the
other hand, for ∆x < 0 we have

f(c + ∆x) − f(c)

∆x
≥ 0,

since the numerator is nonpositive and the denominator is negative. However
by assumption the limit (1) exists and the same value is obtained as ∆x → 0
through postitive or negative values. Thus we must have f ′(c) = 0. Q.E.D.

Let a < b be finite numbers.

Theorem 2 Mean Value Theorem (MVT). Suppose the function f is defined
and continuous on a closed bounded interval [a, b] and differentiable on the
open interval (a, b). Then there is a point c, a < c < b, such that

f(b) − f(a)

b − a
= f ′(c).

PROOF: Consider the secant line ℓ that connects the endpoints (a, f(a))
and (b, f(b) on the graph of the function y = f(x). Using the point-slope
equation for a line, we see that the equation for the secant line is

ℓ : y − f(a) =
f(b) − f(a)

b − a
(x − a).

For each x ∈ [a, b] let g(x) be the directed distance between the curve f(x)
and the line y(x):

g(x) = f(x) −

[

f(a) +
f(b) − f(a)

b − a
x −

f(b) − f(a)

b − a
a

]

.

Note that g(a) = g(b) = 0 and

g′(x) = f ′(x) −
f(b) − f(a)

b − a
.

Since g vanishes at the endpoints and g is continuous on [a, b] by the EVT
there must be some interior point c ∈ (a, b) such that g(c) is an extreme
value of g. By Fermat’s theorem g′(c) = 0, which means

f(b) − f(a)

b − a
= f ′(c).

Q.E.D.

2



0.2 The EMVT

Theorem 3 Extended Mean Value Theorem (EMVT). Suppose f(x), g(x)
are functions such that

1. f, g are defined and continuous on the closed bounded interval [a, b],
a < b.

2. f, g are differentiable on the open interval (a, b).

3. g′(x) 6= 0 for all x ∈ (a, b).

Then there exists a c ∈ (a, b) such that

f ′(c)

g′(c)
=

f(b) − f(a)

g(b) − g(a)
.

NOTE: If g(x) = x, then this is just the statement of the Mean Value The-
orem (MVT).

PROOF: For the MVT we considered the function

F (x) = f(x) − L(x) = f(x) −

(

f(b) − f(a)

b − a

)

(x − a) − f(a).

We observed that F (a) = F (b) = 0 and that there must be a relative ex-
tremum of F at some c ∈ (a, b). Then by the Fermat Theorem we must have
F ′(c) = 0. But

F ′(x) = f ′(x) −

(

f(b) − f(a)

b − a

)

.

For the EMVT we apply the same procedure to the function

F (x) = f(x) −

(

f(b) − f(a)

g(b) − g(a)

)

(g(x) − g(a)) − f(a).

Again F (a) = F (b) = 0 and there must be a relative extremum of F at
some c ∈ (a, b). By the Fermat Theorem and assumption 1. we must have
F ′(c) = 0. Thus

F ′(c) = f ′(c) −

(

f(b) − f(a)

g(b) − g(a)

)

g′(c) = 0.
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or
f ′(c)

g′(c)
=

f(b) − f(a)

g(b) − g(a)
,

since g′(c) 6= 0. Q.E.D.

0.3 A 0

0
form of the L’Hospital Rule

Theorem 4 Let f(x) and g(x) be differentiable in an open neighborhood N

containing x = a, (but not necessarily at x = a), f ′(x), g′(x) continuous in
the same neighborhood, and suppose g′(x) 6= 0 in N . Suppose

lim
x→a

f(x) = 0, lim
x→a

g(x) = 0.

Then

lim
h→a

f(x)

g(x)
= lim

h→a

f ′(x)

g′(x)
,

where the equality is meant in any one of the senses

1. Both limits exist and are equal.

2. Both limits diverge to +∞.

3. Both limits diverge to −∞.

If the right hand limit fails to exist, the rule is inconclusive.

Corollary 1 The Rule is also true if the limits are right hand (x → a+) or
left-hand (x → a−).

PROOF OF THE RULE: Since limx→a f(x) = 0, limx→a g(x) = 0, we can
extend the domains of f, g to x = a, if necessary, by defining f(a) = g(a) = 0.
Then f and g are continuous at a. Now let x be in the neighborhood N , with
x > a. Then the EMVT applies to the interval [a, x] and there is a y ∈ (a, x)
such that

f ′(y)

g′(y)
=

f(x) − f(a)

g(x) − g(a)
=

f(x)

g(x)
.

Thus

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(y)

g′(y)
= lim

x→a+

f ′(x)

g′(x)
.

if the last limit exists or diverged to ±∞. Similarly, if x < a we apply the
EMVT to the interval [x, a] and get the same result for the limit as x → a−.
Q.E.D.
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0.4 A ∞
∞

form of the L’Hospital Rule

The proofs of the ∞

∞
forms of the L’Hospital Rule are a little trickier. We

will prove a right-hand limit version; the proof of the left-hand limit case
is virtually identical. If both left and right-hand limits exist and are equal,
then the two-sided limit exists.

Theorem 5 Suppose

1. f(x) and g(x) are differentiable in an open interval (a, b), and f ′(x), g′(x)
are continuous in the same neighborhood

2. g′(x) 6= 0 on (a, b)

3. limx→a+ f(x) = +∞, limx→a+ g(x) = +∞

Then if

lim
h→a+

f ′(x)

g′(x)
= L,

we also have

lim
h→a+

f(x)

g(x)
= L,

where the equality is meant in any one of the senses

1. Both limits exist and are equal.

2. Both limits diverge to +∞.

3. Both limits diverge to −∞.

The test is inconclusive if the right hand limit fails to exist.

PROOF: Let a < x < y < b and apply the EMVT to the interval [x, y]. Then
there is a ξ ∈ (x, y) such that

f ′(ξ)

g′(ξ)
=

f(y) − f(x)

g(y) − g(x)
=

f(x)

g(x)

1 − f(y)
f(x)

1 − g(y)
g(x)

. (2)
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Now we let both x and y approach a, but with x making the approach more
rapidly than y, so that

lim
f(y)

f(x)
= lim

g(y)

g(x)
= 0.

This can be done because of assumption 3. Thus

lim
1 −

g(y)
g(x)

1 − f(y)
f(x)

= 1

and, since f ′(x)
g′(x)

is continuous,

lim
f ′(ξ)

g′(ξ)
= lim

h→a+

f ′(x)

g′(x)
= L.

It follows from (2) that

lim
x→a+

f(x)

g(x)
= lim

f ′(ξ)

g′(ξ)
lim

1 −
g(y)
g(x)

1 − f(y)
f(x)

= L · 1 = L.

Q.E.D.

6


