The Mean Value Theorem and the Extended Mean Value Theorem

Willard Miller

September 21, 2006

0.1 The MVT

Recall the Extreme Value Theorem (EVT) from class: If the function f is defined and continuous on a closed bounded interval $[a, b]$ then there is some point $c \in[a, b]$ where it takes on its maximum value $M=f(c)$ and some point $d \in[a, b]$ where it takes on its minimum value $m=f(d)$. Thus

$$
M=f(c) \geq f(x) \geq f(d)=m
$$

for all $x \in[a, b]$.
Theorem 1 Fermat's Theorem. (Not his last one but a very useful observation that is easy to prove.) Suppose the function f is defined and continuous on a closed bounded interval $[a, b]$ and takes on an extreme value (either its maximum M or its minimum m) at an interior point c of the interval, so $a<c<b$. If the derivative $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

PROOF: To be definite, we assume that $f(c)=M$. (The proof for the case $f(c)=m$ is virtually the same.) By definition

$$
\begin{equation*}
f^{\prime}(c)=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x} . \tag{1}
\end{equation*}
$$

Since $f(c)=M$ is a maximum, it follows that for $\Delta x>0$ we have

$$
\frac{f(c+\Delta x)-f(c)}{\Delta x} \leq 0
$$

since the numerator is nonpositive and the denominator is positive. On the other hand, for $\Delta x<0$ we have

$$
\frac{f(c+\Delta x)-f(c)}{\Delta x} \geq 0
$$

since the numerator is nonpositive and the denominator is negative. However by assumption the limit (1) exists and the same value is obtained as $\Delta x \rightarrow 0$ through postitive or negative values. Thus we must have $f^{\prime}(c)=0$. Q.E.D.

Let $a<b$ be finite numbers.
Theorem 2 Mean Value Theorem (MVT). Suppose the function f is defined and continuous on a closed bounded interval $[a, b]$ and differentiable on the open interval (a, b). Then there is a point $c, a<c<b$, such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

PROOF: Consider the secant line ℓ that connects the endpoints $(a, f(a))$ and $(b, f(b)$ on the graph of the function $y=f(x)$. Using the point-slope equation for a line, we see that the equation for the secant line is

$$
\ell: \quad y-f(a)=\frac{f(b)-f(a)}{b-a}(x-a)
$$

For each $x \in[a, b]$ let $g(x)$ be the directed distance between the curve $f(x)$ and the line $y(x)$:

$$
g(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a} x-\frac{f(b)-f(a)}{b-a} a\right] .
$$

Note that $g(a)=g(b)=0$ and

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}
$$

Since g vanishes at the endpoints and g is continuous on $[a, b]$ by the EVT there must be some interior point $c \in(a, b)$ such that $g(c)$ is an extreme value of g. By Fermat's theorem $g^{\prime}(c)=0$, which means

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Q.E.D.

0.2 The EMVT

Theorem 3 Extended Mean Value Theorem (EMVT). Suppose $f(x), g(x)$ are functions such that

1. f, g are defined and continuous on the closed bounded interval $[a, b]$, $a<b$.
2. f, g are differentiable on the open interval (a, b).
3. $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$.

Then there exists a $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

NOTE: If $g(x)=x$, then this is just the statement of the Mean Value Theorem (MVT).

PROOF: For the MVT we considered the function

$$
F(x)=f(x)-L(x)=f(x)-\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)-f(a) .
$$

We observed that $F(a)=F(b)=0$ and that there must be a relative extremum of F at some $c \in(a, b)$. Then by the Fermat Theorem we must have $F^{\prime}(c)=0$. But

$$
F^{\prime}(x)=f^{\prime}(x)-\left(\frac{f(b)-f(a)}{b-a}\right)
$$

For the EMVT we apply the same procedure to the function

$$
F(x)=f(x)-\left(\frac{f(b)-f(a)}{g(b)-g(a)}\right)(g(x)-g(a))-f(a)
$$

Again $F(a)=F(b)=0$ and there must be a relative extremum of F at some $c \in(a, b)$. By the Fermat Theorem and assumption 1. we must have $F^{\prime}(c)=0$. Thus

$$
F^{\prime}(c)=f^{\prime}(c)-\left(\frac{f(b)-f(a)}{g(b)-g(a)}\right) g^{\prime}(c)=0 .
$$

or

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)},
$$

since $g^{\prime}(c) \neq 0$. Q.E.D.

0.3 A $\frac{0}{0}$ form of the L'Hospital Rule

Theorem 4 Let $f(x)$ and $g(x)$ be differentiable in an open neighborhood N containing $x=a$, (but not necessarily at $x=a$), $f^{\prime}(x), g^{\prime}(x)$ continuous in the same neighborhood, and suppose $g^{\prime}(x) \neq 0$ in N. Suppose

$$
\lim _{x \rightarrow a} f(x)=0, \quad \lim _{x \rightarrow a} g(x)=0
$$

Then

$$
\lim _{h \rightarrow a} \frac{f(x)}{g(x)}=\lim _{h \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

where the equality is meant in any one of the senses

1. Both limits exist and are equal.
2. Both limits diverge to $+\infty$.
3. Both limits diverge to $-\infty$.

If the right hand limit fails to exist, the rule is inconclusive.
Corollary 1 The Rule is also true if the limits are right hand $(x \rightarrow a+)$ or left-hand $(x \rightarrow a-)$.

PROOF OF THE RULE: Since $\lim _{x \rightarrow a} f(x)=0, \quad \lim _{x \rightarrow a} g(x)=0$, we can extend the domains of f, g to $x=a$, if necessary, by defining $f(a)=g(a)=0$. Then f and g are continuous at a. Now let x be in the neighborhood N, with $x>a$. Then the EMVT applies to the interval $[a, x]$ and there is a $y \in(a, x)$ such that

$$
\frac{f^{\prime}(y)}{g^{\prime}(y)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f(x)}{g(x)} .
$$

Thus

$$
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a+} \frac{f^{\prime}(y)}{g^{\prime}(y)}=\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the last limit exists or diverged to $\pm \infty$. Similarly, if $x<a$ we apply the EMVT to the interval $[x, a]$ and get the same result for the limit as $x \rightarrow a-$. Q.E.D.

0.4 A $\frac{\infty}{\infty}$ form of the L'Hospital Rule

The proofs of the $\frac{\infty}{\infty}$ forms of the L'Hospital Rule are a little trickier. We will prove a right-hand limit version; the proof of the left-hand limit case is virtually identical. If both left and right-hand limits exist and are equal, then the two-sided limit exists.

Theorem 5 Suppose

1. $f(x)$ and $g(x)$ are differentiable in an open interval (a, b), and $f^{\prime}(x), g^{\prime}(x)$ are continuous in the same neighborhood
2. $g^{\prime}(x) \neq 0$ on (a, b)
3. $\lim _{x \rightarrow a+} f(x)=+\infty, \quad \lim _{x \rightarrow a+} g(x)=+\infty$

Then if

$$
\lim _{h \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

we also have

$$
\lim _{h \rightarrow a+} \frac{f(x)}{g(x)}=L
$$

where the equality is meant in any one of the senses

1. Both limits exist and are equal.
2. Both limits diverge to $+\infty$.
3. Both limits diverge to $-\infty$.

The test is inconclusive if the right hand limit fails to exist.

PROOF: Let $a<x<y<b$ and apply the EMVT to the interval $[x, y]$. Then there is a $\xi \in(x, y)$ such that

$$
\begin{equation*}
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(y)-f(x)}{g(y)-g(x)}=\frac{f(x)}{g(x)} \frac{1-\frac{f(y)}{f(x)}}{1-\frac{g(y)}{g(x)}} \tag{2}
\end{equation*}
$$

Now we let both x and y approach a, but with x making the approach more rapidly than y, so that

$$
\lim \frac{f(y)}{f(x)}=\lim \frac{g(y)}{g(x)}=0
$$

This can be done because of assumption 3. Thus

$$
\lim \frac{1-\frac{g(y)}{g(x)}}{1-\frac{f(y)}{f(x)}}=1
$$

and, since $\frac{f^{\prime}(x)}{g^{\prime}(x)}$ is continuous,

$$
\lim \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\lim _{h \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

It follows from (2) that

$$
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=\lim \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} \lim \frac{1-\frac{g(y)}{g(x)}}{1-\frac{f(y)}{f(x)}}=L \cdot 1=L
$$

Q.E.D.

